
1

Delta Debugging Microservice Systems with
Parallel Optimization

Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and Dan Ding

Abstract—Microservice systems are complicated due to their runtime environments and service communications. Debugging a failure
involves the deployment and manipulation of microservice systems on a containerized environment and faces unique challenges due
to the high complexity and dynamism of microservices. To address these challenges, we propose a debugging approach for
microservice systems based on the delta debugging algorithm, which is to minimalize failure-inducing deltas of circumstances (e.g.,
deployment, environmental configurations). Our approach includes novel techniques for defining, deploying/manipulating, and
executing deltas during delta debugging. In particular, to construct a (failing) circumstance space for delta debugging to minimalize, our
approach defines a set of circumstance dimensions that can affect the execution of microservice systems. To automate the testing of
deltas, our approach includes the design of an infrastructure layer for automating deployment and manipulation of microservice
systems. To optimize the delta debugging process, our approach includes the design of parallel execution for delta testing tasks. Our
evaluation shows that our approach is scalable and efficient with the provided infrastructure resources and the designed parallel
execution for optimization. Our experimental study on a medium-size microservice benchmark system shows that our approach can
effectively identify failure-inducing deltas that help diagnose the root causes.

Index Terms—microservices, fault localization, delta debugging, parallel optimization

F

1 INTRODUCTION

A microservice system is composed of small indepen-
dent microservices that are designed around business ca-
pability and owned by small self-contained teams. Those
microservices run in their own processes and communi-
cate with lightweight mechanisms such as HTTP resource
APIs [1]. An industrial microservice system often includes
hundreds to thousands of microservices and each microser-
vice may have hundreds to thousands of instances. For
example, Tencent’s WeChat system [2] has more than 2,000
microservices running on more than 40,000 backend servers
across multiple data centers [3]. Each of those microser-
vice instances might be running inside a container (e.g.,
Docker [4]) and in a constantly-changing state as they are
dynamically scheduled by an orchestrator such as Kuber-
netes [5].

Beyond the implementations of individual microser-
vices, many failures of microservice systems are due to their
runtime environments (e.g., containers), communications,
or coordinations [6]. The numerous interactions between
microservices are implemented using network communi-
cation; therefore, asynchronous invocations are pervasive,
while synchronous invocations are considered harmful for
microservices due to the multiplicative effect of down-
time [1]. The nature of microservice systems has pushed
their complexity from the component level (i.e., individual

• X. Peng is the corresponding author (pengxin@fudan.edu.cn).
• X. Zhou, X. Peng, C. Ji, W. Li, and D. Ding are with the School of Com-

puter Science and the Shanghai Key Laboratory of Data Science, Fudan
University, China; and the Shanghai Institute of Intelligent Electronics &
Systems, China.

• T. Xie is with the University of Illinois at Urbana-Champaign, USA.
• J. Sun is with the Singapore Management University, Singapore.

microservices) to the architecture level (i.e., deployment and
network communication of microservices) [5], [7]. Moreover,
microservices offer extensive deployment flexibility, while a
poor deployment choice can increase cost, and compromise
performance, scalability, and fault tolerance [8].

Therefore, debugging a failure in microservice systems
faces unique challenges due to the high complexity and dy-
namism of microservices in four dimensions: node, instance,
configuration, and sequence. First, numerous microservice
instances run on a large number of nodes (e.g., physical
or virtual machines) and the distribution of microservice
instances over nodes is constantly changing, bringing great
uncertainties to microservice communication. For example,
the instances that serve the requests to a microservice may
reside in different locations over the network, and thus
an estimation of timeout may be inaccurate. Second, the
instances of a microservice may be in inconsistent states and
thus behave differently. For example, caches are widely used
to reduce latency and chattiness [9], which may bring im-
plicit states into microservice instances. An invocation chain
may involve the same microservice’s different instances
that are in different states, thus causing failures that are
hard to locate. Third, microservice systems involve complex
environmental configurations such as memory/CPU limits of
microservices and containers, and improper or inconsistent
environmental configurations may incur runtime failures.
For example, inconsistent memory-limit configurations of
microservices and containers may cause the memory us-
age of a microservice instance to exceed the limit of the
container, and in turn cause the instance to be killed by
Kubernetes. Fourth, microservice invocations are executed
or returned in an unpredictable sequence due to the use of
asynchronous invocations (via REST invocations or message
queues). Missing or improper coordination of the execution

2

or returning of microservice invocations may cause failures
due to unmet assumptions.

Microservice developers in practice depend on log anal-
ysis and sometimes with visualization and trace analysis
for fault analysis and debugging. Our recent industrial sur-
vey [10] reveals that they often need to manually examine
a large number of logs, and the debugging depends heavily
on the developers’ experience on the system (e.g., overall
architecture and error-prone microservices) and similar fault
cases, as well as the technology stack being used. Due to the
lack of tool support, they often spend days or even weeks
analyzing and debugging microservice faults. Existing ap-
proaches of automated fault localization and debugging do
not support the multi-dimensional nature of microservice
faults. For example, slice-based fault localization [11], [12]
reduces the search space for possible locations of a fault by
program slicing; spectrum-based fault localization [13], [14]
estimates possible fault locations based on program spectra
(i.e., program entities) and their coverage status in failed
and passed tests. These approaches are based on the analysis
of program execution paths in testing, while microservice
faults are relevant to not only execution paths but also
factors in other dimensions such as microservice instance,
interaction sequence, and environmental configuration.

To address the preceding challenges, in this article, we
propose an approach for debugging microservice systems,
based on representing microservice system settings as cir-
cumstances (specified from various dimensions) such as
multi-node and multi-instance deployment. Such represen-
tation enables us to conduct delta debugging [15], a tech-
nique for simplifying or isolating failure causes (e.g., search-
ing for minimal failure-inducing circumstances) among all
circumstances. During delta debugging, a series of delta
testing tasks are created to run the test cases with different
circumstances.

Our earlier work [16] presented the basic concepts and
approach of delta debugging microservice systems. How-
ever, the execution of delta testing tasks consumes nu-
merous resources (e.g., virtual machines) and involves a
complex setting of the deployment, environmental configu-
rations, and interaction sequences of microservice instances.
Our extension in this article provides two main techniques
to address the challenging requirement for delta debugging
microservice systems: high efficiency of executing delta
testing tasks. First, to automate the testing of deltas, our
approach includes the design of an infrastructure layer
(with easy-to-use APIs) for automating deployment and
manipulation of microservice systems. This infrastructure
layer is based on the existing infrastructure of container
orchestration and service mesh. Second, to optimize the
delta debugging process, our approach includes the design
of parallel execution for delta testing tasks.

Our evaluation shows that our approach is scalable with
the provided infrastructure resources (virtual machines),
and the optimization can substantially improve the ef-
ficiency of delta debugging. Our experimental study on
a medium-size open microservice benchmark system [6]
shows that the approach can effectively identify failure-
inducing deltas that help identify the root causes.

In this work, we make the following main contributions:

• We define a set of dimensions of the circumstances
that affect the execution of microservice systems.
Based on the definition, we propose a representation
of circumstances and deltas, and a delta debugging
algorithm for microservice systems.

• We develop an infrastructure layer with easy-to-use
APIs for automating the deployment and manipula-
tion of microservice systems for delta debugging.

• We design an optimized parallel scheduling mecha-
nism that supports highly efficient execution of delta
testing tasks.

• We conduct an evaluation to demonstrate the scala-
bility and efficiency of our approach and an experi-
mental study to demonstrate the effectiveness of our
approach.

The rest of the article is structured as follows. Section 2
presents background knowledge of delta debugging and
microservice systems. Section 3 presents an overview of the
proposed approach. Section 4 describes the delta debugging
controller of the approach. Section 5 introduces the imple-
mentation of the infrastructure layer. Section 6 presents the
evaluation of the proposed approach. Section 7 discusses
related work. Section 8 concludes with future work.

2 BACKGROUND

Our work is based on delta debugging [15], which is an
automated debugging technique. On the other hand, our
work is enabled by the recent advances in the infrastructures
and runtime management of microservices, allowing us
to manipulate the runtime deployment, configuration, and
interactions of microservice systems as required to test the
target system with different settings.

2.1 Delta Debugging
Delta debugging [15] automates the debugging of programs
by narrowing down the failure-inducing circumstances. A
circumstance is a combination of the factors affecting pro-
gram execution, including not only the program inputs but
also other dimensions (e.g., deployment and environmental
configuration) that may affect the program execution. The
basic idea of delta debugging is that, by repeating a failed
test over and over again under changed circumstances, we
can identify what is relevant to the failure and what is not.
The changes of circumstances are named deltas.

A delta debugging process starts with a failed test of a
given program and the circumstances that may induce the
failure. Delta debugging then iteratively tests the program
under different circumstances and determines the relevance
of the circumstances to the failure based on the test results,
until a minimal failure-inducing circumstance is found. In
each iteration, the circumstances are partitioned into sub-
sets, and each subset and its complement are tested. If a
subset or its complement makes the program fail, the po-
tential failure-inducing circumstances are reduced and the
delta debugging process proceeds to focus on the remaining
circumstances and to reduce it further.

We refer the readers to the article on delta debugging [15]
for a detailed introduction of delta debugging, including the
concepts and processes.

3

2.2 Microservice System
Industrial microservice systems usually rely on runtime in-
frastructures for automating deployment, scaling, and man-
agement. Kubernetes [17] is the most widely used runtime
infrastructure for microservice systems. Other microser-
vice infrastructures include Docker Swarm [18], Spring
Cloud [19], and Mesos [20]. Kubernetes supports the config-
uration management, service discovery, service registry, and
load balancing of microservice systems. It groups containers
that make up an application into logical units (called pods)
for easy management and discovery [17]. A pod is the basic
building block of Kubernetes and contains one or multiple
containers that work together.

The rise of cloud native applications such as
microservice-based ones promotes the introduction of ser-
vice mesh [5] as a separate layer for handling service-to-
service communication. The responsibility of the service
mesh is to ensure end-to-end performance and reliability
of service communication through the complex topology
of services. For microservice systems, the service mesh
typically includes an array of lightweight network proxies
named sidecars, which are seamlessly deployed alongside
microservice instances. The service mesh provides a uni-
form, application-wide facility for introducing visibility and
control into the application runtime. For the purpose of
delta debugging, the service mesh provides a means to
monitor, manage, and control the communication between
microservices.

Istio [21] is the most recognized implementation of ser-
vice mesh for microservices. It supports managing traf-
fic flows between microservices, enforcing access policies,
and aggregating telemetry data. Istio can be deployed on
Kubernetes. They are combined to provide the required
infrastructure for the runtime management of microservices
in our work.

3 APPROACH OVERVIEW

Our delta debugging approach for microservice systems
can be used when a set of test cases are executed on a
microservice system using the same configuration, and at
least one of the test cases fails. The approach needs to be
run on a containerized environment, allowing the approach
to test the target system with different settings. Figure 1
shows an overview of the approach. It includes an infras-
tructure layer (gray boxes) that automates the deployment
and manipulation of microservice systems and a control
layer (white boxes) that controls the whole scheduling and
execution process.

The infrastructure layer is built on existing container
orchestration platforms (e.g., Kubernetes) and service mesh
platforms (e.g., Istio) for microservices. We develop an in-
frastructure wrapper to provide easy-to-use APIs for ap-
plying the delta debugging approach and testing deltas on
demand. The implementation of the infrastructure layer is
described in Section 5.

Based on the infrastructure layer, the control layer takes
as input a set of test cases (including a failing one and
some passing ones) and a failure-inducing circumstance,
and returns a minimal set of deltas that cause the failure.
In particular, a circumstance is defined based on various

Fig. 1. Approach Overview

dimensions (see Section 4.1). The failure-inducing circum-
stance is the circumstance extracted from the execution of
the failing test case. The returned deltas specify a minimal
set of differences on the failure-inducing circumstance that
can change the testing result of the failing test case and at
the same time maintain the testing results of the passing test
cases. The control layer includes three components: the delta
debugging controller, task scheduler, and task executor.

Delta Debugging Controller. The delta debugging con-
troller controls the whole delta debugging process. It first
confirms that the failing test case can pass with the simplest
circumstance, i.e., the one where the value of each dimen-
sion is the simplest setting. It then uses the delta debugging
algorithm to iteratively search for a minimal set of deltas of
the simplest circumstance to make the test case fail. During
the process, the controller tests a series of delta sets and for
each delta set it creates a delta testing task that runs the
test cases with the circumstance obtained by applying the
delta set to the simplest circumstance. To optimize the delta
debugging process, the controller dynamically determines
the delta testing tasks that need to be executed, and notifies
the task scheduler (described next) to add or revoke tasks.

Task Scheduler. The task scheduler schedules the ex-
ecution of delta testing tasks based on the availability of
infrastructure resources (e.g., virtual machines). It maintains
a queue of delta testing tasks, and adds or revokes tasks
according to notifications from the delta debugging con-
troller. The scheduler monitors the resource availability of
the infrastructure and schedules tasks to execute when the
required resources are available.

Task Executor. The task executor executes a scheduled
delta debugging task on the infrastructure. The executor
uses the infrastructure APIs to deploy the target system
with the allocated resources and set the environmental
configurations and interactions of involved microservices
according to the given circumstance. Then the executor runs
the test cases and returns test results for further analysis.

The delta debugging controller is the key of the approach
and is presented in detail in Section 4.

4 DELTA DEBUGGING CONTROLLER

Our delta debugging approach for a microservice system is
designed to address unique characteristics of microservices.
First, the circumstances (each of which is specified from
five dimensions) and corresponding deltas considered in
our approach reflect the deployment, environmental con-
figurations, and interaction sequences of microservices. Sec-
ond, the application and testing of deltas involve complex

4

deployment and setting of the microservice system in a
containerized environment, and thus are time consuming.
Therefore, our approach includes a novel optimization of
the delta debugging process.

4.1 Dimensions

In general, delta debugging determines circumstances that
are relevant for producing a failure [15]. For a microservice
system, the relevant circumstances include not only the in-
puts but also the deployment, environment, and interactions
of microservices. A circumstance can be specified from the
following five dimensions.

• Node. The node dimension specifies the number of
nodes (e.g., physical or virtual machines) that can
be used by the target system. The more nodes that
are provided, the more distributed the instances of
the same microservice are. The distributed deploy-
ment of the instances of a microservice leads to
uncertainties in the network communications with
the microservice, thus incurring failures caused by
unexpected network failures or timeout.

• Instance. The instance dimension specifies the num-
ber of instances of a microservice. Some microser-
vices have explicitly or implicitly defined states. For
example, a microservice may store some critical vari-
ables in a local or remote cache (e.g., Redis [22]).
Without proper coordination, different instances of
the same microservice may be in inconsistent states,
thus causing failures.

• Configuration. The configuration dimension speci-
fies the environmental configurations of a microser-
vice, such as the network configurations and re-
source (e.g., memory, CPU) limits of microservices or
containers. For example, inconsistent configurations
of the memory limit of a microservice instance and
that of a container where the instance resides may
cause the instance to be killed when its memory
usage exceeds the memory limit of the container.

• Sequence. The sequence dimension specifies the exe-
cution and returning sequence of microservice invo-
cations. For a series of asynchronous invocations, the
sequence of execution and returning of the invoked
microservices is often varying and not consistent
with the sequence of requesting. Without proper co-
ordination, the asynchronous invocations may incur
unexpected sequences of microservice execution or
returning, subsequently causing failures.

• Input. The input dimension determines the input
of a microservice system and its influence on the
microservice system is similar to the influence of
input on an ordinary C program.

Currently we focus on the first four dimensions for
reflecting a microservice system’s characteristics. The input
dimension can be handled in a way similar to the original
delta debugging approach [15]. A circumstance is a specific
combination of the four dimensions involved in a test
execution. The differences between two circumstances are
the deltas. The purpose of delta debugging is to isolate
the minimal set of failure-inducing deltas with reference

to the simplest circumstance. Table 1 shows the values
of each dimension in its simplest setting and its general
setting. For the first three dimensions, the simplest setting
is 1 or the default value, and the general setting can be
the values from the given failure-inducing circumstance
(i.e., the circumstance derived from the given failing test
case). For example, a microservice has 5 instances in the
given failure-inducing circumstance, and then its number of
instances is 1 in the simplest setting and the general setting
can be 5. For the sequence dimension, the execution and
returning sequence of a series of asynchronous invocations
is exactly the requesting sequence of the invocations in
the simplest setting, and the general setting can be any
other sequences of the invocations. For example, if three
microservices are invoked asynchronously in a sequence of
S1, S2, S3, then their execution and returning sequence in
the simplest setting is also S1, S2, S3, and the general setting
can be any other sequence of S1, S2, S3 (e.g., S3, S2, S1).

4.2 Circumstance and Delta Representation

A circumstance is represented as a bit vector that includes
one or multiple bits to specify what value to adopt for
each dimension. For the node dimension, a bit is used to
indicate the number of nodes of the whole system: 0 for
adopting the simplest setting (i.e., only one node) and 1
for adopting the number of nodes in the given failure-
inducing circumstance. For the instance dimension, multiple
bits are used, each indicating the number of a microservice’s
instances: 0 for adopting the simplest setting (i.e., only one
instance) and 1 for adopting the number of the microser-
vice’s instances in the given failure-inducing circumstance.
For the configuration dimension, multiple bits are used,
each indicating the value of a configuration item (i.e., a
configuration parameter of a microservice or its runtime
environment, e.g., the memory limit of a microservice or its
residing container): 0 for adopting the simplest setting (i.e.,
the default value being predefined) and 1 for adopting the
value of the configuration item in the given failure-inducing
circumstance.

For the sequence dimension, multiple bits are used to
represent the execution/returning sequence of a series of
asynchronous invocations, and each bit indicates the or-
der of a pair of invocations: 0 (1) for the order that the
first (second) invocation is executed and returned before
the second (first) one. Therefore, for n asynchronous in-
vocations, C2

n bits are needed to represent the setting of
execution/returning sequence. Figure 2 shows an example
of the representation of execution/returning sequence. In
this example, a microservice MS1 asynchronously invokes
a series of microservice MS2, MS3, MS4, and MS5, and
6 (C2

4) bits are used to capture the execution/returning
sequence of these invocations. If the four microservices are
invoked in the first order shown in Figure 2, the simplest
setting of execution/returning sequence for this series of
asynchronous invocations is [0, 0, 0, 0, 0, 0] based on the
pairs defined in the figure. This setting indicates that each
pair of invocations are executed and returned according to
the invocation order, e.g., MS2 is executed and returned
before MS3. If the four microservices are invoked in the
second order shown in Figure 2, the simplest setting is [1,

5

TABLE 1
Values of Different Dimensions in a Circumstance

Dimension Target Simplest Setting General Setting
Node the whole system 1 the number of nodes in the given failure-inducing circumstance

Instance a microservice 1 the number of its instances in the given failure-inducing circumstance
Configuration a configuration item the default value its value in the given failure-inducing circumstance

Sequence a series of asynchronous invocations the requesting sequence of the invocations any other sequences of the invocations

Fig. 2. Representation of Execution/Returning Sequence

1, 0, 1, 0, 0] based on the pairs defined in the figure. Note
that some value combinations of the bits are invalid as these
combinations imply cycles in the relative orders of microser-
vice invocations. For the example shown in Figure 2, [0,
1, 0, 0, 0, 0] is an invalid execution/returning sequence as
there is a cycle among MS2, MS3, and MS4: the second bit
indicates that MS4 is executed and returned before MS2;
while the first bit and the fourth bit indicate that MS2 is
executed and returned before MS3, and MS3 before MS4;
thus, MS2 should be executed and returned before MS4.

Based on the representation, the simplest circumstance
(i.e., the one with each dimension in the simplest setting)
can be represented by a bit vector where each bit is set to
0. Thus, an atomic delta based on the simplest circumstance
can be represented by a change from 0 to 1 for a bit of the
vector, and the purpose of our delta debugging process is to
find a minimal set of atomic deltas that cause the failure of
a test case.

Note that the representations of the first three dimen-
sions (i.e., node, instance, configuration) can be refined to
represent more values. For example, the number of nodes
can be any value between 1 and the number of nodes in the
given failure-inducing circumstance. To reduce the high cost
of delta debugging, we consider only the simplest setting
and the general setting from the given failure-inducing
circumstance. This strategy can reveal critical deltas in many
cases. Note that for the sequence dimension, our represen-
tation can cover all the possible execution and returning
sequences.

4.3 Delta Debugging Algorithm

Our delta debugging process starts with the confirmation
of the testing result with the simplest circumstance. Ac-
cording to the simplest circumstance, all the microservices
are deployed on one node; each microservice has only one
instance; all the environmental configuration is set to its
default value (e.g., unlimited memory); all the asynchronous
microservice invocations are executed and returned in the
same order of requesting. If the failing test case still fails
with the simplest circumstance, the failure is likely caused
by internal faults of related microservices, and further anal-
ysis of the root cause can be supported by traditional de-

bugging approaches. Otherwise, the simplest circumstance
can be used as the base for delta debugging.

Given the large number of deltas in a microservice
system, our aim is to identify a minimal set of deltas such
that applying the deltas to the simplest circumstance causes
the failing test case to produce failing results and at the same
time causes the passing test cases to maintain passing results.
In the ideal case, the minimal set contains 1 delta, which can
help the developers identify the root cause of the failure.
The minimizing delta debugging algorithm [15] is a variant
of the original delta debugging algorithm [23], which can
be applied to solve our problem. Next, we first present the
details on the delta debugging algorithm and then discuss
how we apply it in our setting.

Given a failure-inducing circumstance fs and the sim-
plest circumstance ss, let U ′ be a set of atomic deltas
between circumstance fs and ss. In other words, applying
all deltas in U ′ to ss results in fs. In the sequence dimen-
sion, multiple bits are used to represent the sequence of a
series of asynchronous invocations, and thus we need to
use the union of U ′ and the set of atomic deltas in the bits
for sequence representation as the universal set of deltas,
represented as U .

Let test(K) where K ⊆ U be the testing result of the
test cases with the circumstance obtained by applying K to
ss. We have test(∅) = X where X indicates all the test cases
pass and test(U) = ×where× indicates the failing test case
fails in the same way of the initial failure and the passing
test cases pass. It is possible that test(K) for a subset K
results in an unknown case test(K) =?, where ? indicates
that the failing test case fails in other ways or some passing
test cases fail. Formally, the goal is to identify a subset of
U , say N , such that test(N) = × and N is 1-minimal, i.e.,
test(N ′) = X for all N ′ ⊂ N and |N ′| = |N | − 1 where |X|
is the cardinality of set X . Intuitively, in other words, we
would like to find a set of deltas N such that taking away
any one of the deltas changes the testing result.

The details of the algorithm, denoted as ddmin(X,n),
is shown in Algorithm 1. There are two inputs. One is a
set of deltas denoted as X . Initially X is set to be U . The
other is a granularity, denoted as n, for partition used in
the algorithm. Initially, it is set to be 2. At Line 1 of the
algorithm, we partition the set of deltas X into n equal-
sized partitions 41, · · · ,4n. Afterwards, we distinguish
four cases.

• Reduce to subset. If there exists a partition4i such that
test(4i) fails, we know that 4i is failure-inducing.
In such a case, we make a recursive call ddmin(4i, 2)
so that we proceed to reduce 4i further. This case
yields a “divide and conquer” approach.

• Reduce to complement. Otherwise, if there exists a
partition 4i such that its complement X \ 4i is
failure-inducing, i.e., test(X \ 4i) fails, we make

6

Algorithm 1 DDMin Algorithm: ddmin(X,n)

partition X into n equal subsets 41, · · ·4n;
for each subset 4i do

if test(4i) = × then
return ddmin(4i, 2);

end if
end for
for each subset 4i do

if test(X \ 4i) = × then
return ddmin(X \ 4i,max(n− 1, 2));

end if
end for
if n < |X| then

return ddmin(X,min(|X|, 2n));
end if
return X ;

a recursive call ddmin(X \ 4i),max(n − 1, 2)) so
that we proceed to reduce X \ 4i further. Note that
the second parameter is set to be n − 1 so that the
granularity is not reduced.

• Increase granularity. Otherwise, if we can still increase
the granularity (i.e., n < |X|), we make a recursive
call ddmin(X,min(|X|, 2n)) so that we can analyze
the deltas in X with a finer-grained manner.

• Done. Otherwise, we return X as we cannot reduce
X further.

The ddmin algorithm is designed to reduce the deltas in
a way similar to binary search and thus is reasonably
efficient (e.g., more efficient compared to the original delta-
debugging algorithm [23]). We refer the readers to [15] for
a detailed discussion on the correctness and complexity of
the algorithm. Note that the algorithm assumes that deltas
are independent of each other, and it is known [15] that
partitioning related deltas in the same partition improves
the efficiency of the algorithm.

4.4 Optimization
Among the four dimensions of deltas, the application of
node delta is the most expensive. A delta testing task
involving node delta needs to allocate more nodes (e.g.,
virtual machines) to deploy the specified circumstance.
Moreover, the initialization of multiple nodes is much more
expensive than the initialization of a single node. There-
fore, our optimization of the delta debugging process first
considers to test the node delta at the beginning. If the
failure-inducing circumstance involves only 1 node, then
we can skip the testing of node delta. Otherwise, we run
test(U \ 4node) where 4node indicates the node delta. If
test(U \ 4node) = X, the failure is caused by the difference
of the node number (i.e., multiple-node deployment). If
test(U \ 4node) = ×, the failure is irrelevant to node delta,
and the rest of the delta debugging process does not need to
consider node delta.

The original ddmin algorithm is serial based on the
assumption that each delta testing task can be executed effi-
ciently. However, it is not true for a microservice system as
the application of deltas involves the complex deployment
and setting of the microservice system in a containerized

environment. For example, the application of an instance
delta involves not only the destroying and creation of
Docker instances but also the initialization of microservice
instances.

Following the idea of speculative execution, we propose
an optimization of the ddmin algorithm based on the paral-
lel execution of delta testing tasks in a cloud environment.
The algorithm, denoted as ddminPar(X,n), partitions the
set of deltas X into n equal-sized partitions41, · · · ,4n (see
Line 1 in Algorithm 1). Instead of serially testing each subset
4i and X \ 4i, the optimized algorithm creates a series of
delta testing tasks of the following types.

• Reduce to Subset Testing. For each 4i, create a delta
testing task test(4i).

• Reduce to Complement Testing. For each 4i, create a
delta testing task test(X \ 4i).

• Increase Granularity Testing. For each 4i, partition it
into two equal-sized partitions4i1 and4i2, and cre-
ate two delta testing tasks test(4i1) and test(4i2).

These delta testing tasks together are added to the task
queue of the task scheduler in the same preceding order. The
tasks of the same type are ordered by the estimated failure
probability and cost of their executions in the following way.
We sort the set of deltas X to facilitate the ordering of delta
testing tasks as follows. First, the deltas for different dimen-
sions are sorted in the following order: instance, sequence,
and configuration. Second, the deltas for each dimension are
ranked according to the following rules.

• For the instance dimension, the deltas are ranked in
the descending order by the number of instances
implied by the delta. The assumption is that the
more instances of a microservice are involved in the
failure-inducing circumstance, the more likely the
multi-instance problem of the microservice causes
the failure.

• For the sequence dimension, the deltas are ranked
in the descending order by the distance between the
corresponding pair of invocations in the invocation
sequence. For the example shown in Figure 2 (i.e.,
MS1 asynchronously invokes a series of microser-
vice MS2, MS3, MS4, and MS5), the distance be-
tween MS2 and MS3 is 1, and the distance between
MS2 and MS4 is 2. The assumption is that the larger
the change of the execution and returning order is,
the more likely the sequence problem of the pair of
microservices causes the failure.

• For the configuration dimension, the deltas are
ranked in the descending order by the strictness
implied by the delta. The assumption is that the
stricter the environmental configuration (e.g., smaller
memory limit) of a microservice is, the more likely
the configuration problem of the microservice causes
the failure.

Based on the ranked deltas, we then calculate the rank
number of a delta testing task as the sum of the rank
numbers of the deltas involved in the task. Note that the
first delta in the ranked list of a dimension’s deltas has
rank number 1. Thus, a set of delta testing tasks of the
same type are ordered by the rank numbers in the ascending

7

order. If the rank numbers of two tasks are equal, we further
order them by the execution cost in the ascending order; the
execution cost is the sum of the time required to apply all the
deltas in the task. The time is estimated based on historical
data. For example, when a delta indicating the number of
a microservice’s instances is applied in task execution, the
time is recorded for subsequent cost estimation of the same
delta.

These tasks are scheduled and executed according to the
following rules.

• If a task has been executed, it is not executed again,
and the recorded execution result is returned.

• If a task implies an invalid circumstance, e.g., having
cycles in a sequence setting or unsatisfying prede-
fined constraints, a success is returned without exe-
cution.

• If test(4i) fails, all the tasks that are created together
are canceled (if they are executing) or removed from
the queue (if they are waiting for execution) except
test(4i1) and test(4i2).

• If test(X \ 4i) fails, all the tasks that are created
together are canceled (if they are executing) or re-
moved from the queue (if they are waiting for execu-
tion) except those tasks test(4j) (4j ⊂ X \ 4i).

• If test(4i1) or test(4i2) fails, all the tasks that are
created together are canceled (if they are executing)
or removed from the queue (if they are waiting for
execution).

Based on the preceding optimization, it is possible that
multiple delta testing tasks are executed in parallel, thus
improving the efficiency of the approach.

5 INFRASTRUCTURE

Our current implementation of the infrastructure layer is
based on Docker CE 17.03, Kubernetes 1.9, and Istio 0.6.
We develop a wrapper to provide easy-to-use APIs for
executing delta testing tasks. The wrapper leverages the
capabilities provided by the container orchestrator (Ku-
bernetes) and service mesh (Istio), and implements some
optimization strategies for initializing delta testing tasks.
We also customize Istio to implement the control of ex-
ecution/returning sequence of asynchronous invocations.
The infrastructure layer consists of multiple clusters, each
of which includes one or multiple virtual machines. The
resources provided for delta testing tasks are supplied and
managed by a cluster. When a delta testing task is scheduled
to execute, a cluster is allocated to it and initialized for its
execution.

5.1 Infrastructure APIs
The wrapper provides the following four sets of APIs,
each of which corresponds to a dimension of circumstance.
Among these API sets, the node APIs, instance APIs, and
configuration APIs are implemented based on Kubernetes
REST APIs, and sequence APIs are implemented by cus-
tomizing Istio.

• Node. The node APIs set the number of nodes used
for the deployment of a microservice system. The

APIs are implemented based on the Kubernetes APIs
for expanding/shrinking virtual machines.

• Instance. The instance APIs set the number of a
microservice’s instances. The APIs are implemented
based on the Kubernetes APIs for scaling pods.

• Configuration. The configuration APIs set the values
of the environmental configurations of microservices.
The APIs are implemented based on the Kubernetes
APIs for configuring pods.

• Sequence. The sequence APIs set the execu-
tion/returning sequences of a series of asynchronous
API invocations. The APIs are implemented based on
our customization of Istio.

5.2 Task Initialization Optimization
The execution of a delta testing task includes two parts,
i.e., the initialization of the task and the execution of the
test cases. The initialization includes complex deployment
and configuration of Docker containers and microservice
instances, and thus is time consuming. To improve the
efficiency of executing delta testing tasks, we make the
following optimizations for task initialization in the imple-
mentation of the node, instance, and configuration APIs.

Delta initialization. When a cluster is allocated for a
delta testing task, the cluster needs to be initialized accord-
ing to the corresponding circumstance. Instead of restoring
the cluster and then applying the specified circumstance,
we adopt a strategy of delta initialization. It detects the
differences (deltas) between the specified circumstance and
the current circumstance used in the last task execution, and
incrementally applies the detected deltas on the cluster.

Group initialization. The application of some deltas im-
plies expensive infrastructure operations. For example, us-
ing Kubernetes APIs to apply a memory limit of a microser-
vice may cause the restart or even destroying/recreation
of corresponding microservice instances. To reduce such
expensive operations, we group related deltas and apply
the deltas in a group together.

Ordered initialization. When applying a group of
deltas, the default execution strategy of Kubernetes may be
inefficient. For example, when applying an instance delta of
a microservice from 1 to 6 instances and a configuration
delta that sets the memory limit of the microservice to
200 Mb, the default execution strategy of Kubernetes may
be creating 5 instances of the microservice to apply the
instance delta and then setting the memory limit of the 6
instances. As setting the memory limit causes the destroying
and recreation of the 6 instances, the application of the
group of deltas involves 6 destroyings and 11 creations
of microservice instances. To optimize the application of a
group of deltas, we define optimized orders for different
kinds of deltas. For example, in the case mentioned earlier,
the optimized order is to destroy 1 microservice instance
(the existing one) and then create 6 microservice instances
with the memory limit. In this way, the application of the
group of deltas involves only 1 destroying and 6 creations
of microservice instances.

5.3 Service Mesh Customization
The purpose of customizing the service mesh (Istio in our
work) is to implement the control of execution/returning

8

sequence of asynchronous invocations. The implementation
is based on the sidecar provided by Istio. A pod is the basic
building block of Kubernetes and includes one or more
microservice instances. Istio is integrated with Kubernetes
by injecting a sidecar (a kind of proxy) instance into each
pod. The communications between two microservices are
then through the sidecars: a microservice request (response)
is first routed to the requester (provider) sidecar, then sent
to the provider (requester) sidecar, and finally forwarded to
the provider (requester). In this way, Istio can monitor and
manage the communications between microservices via its
corresponding components (mixer and pilot).

For a series of asynchronous microservice invo-
cations with a specified execution/returning sequence
〈MS1, · · · ,MSn〉, we implement the sequence control
based on sidecar in the following steps:

1. block the provider sidecars of MS1 to MSn to hold
the microservice requests and at the same time monitor all
the requests;

2. after all the requests have been received by the cor-
responding provider sidecars, forward the request to MSi

(initially MS1) for execution and returning;
3. after the requester receives the response of MSi,

forward the request to MSi+1 for execution and returning;
4. repeat Step 3 until all the microservice invocations are

returned to the requester.

6 EVALUATION

We implement our approach itself as a microservice system
(including the delta debugging controller, task scheduler,
and task executor) running on a containerized environment.
To evaluate the effectiveness and efficiency of the approach,
we conduct two experimental studies to answer the follow-
ing two research questions:

RQ1 (Efficiency and Scalability). How efficient is our
approach for debugging failures caused by different rea-
sons? How well does it scale with the available resources
(virtual machines)?

RQ2 (Effectiveness). How effective is our approach for
debugging failures from industrial systems? How well does
our approach identify failure-inducing deltas that help di-
agnose the root causes?

We conduct both studies based on a medium-size open
benchmark microservice system named TrainTicket [6] (with
41 microservices reflecting real-world industrial practices)
after adapting it to the implementation of our infrastruc-
ture layer. The environment used in the studies includes
13 virtual machines (VMs) provided by a private cloud
at Fudan University. Each VM has an 8-core CPU (Intel
XEON 3GHz) and 24GB memory, and CentOS 7 installed
as the operating system. One of the VMs is used to run
our microservice debugging system. The source code of the
benchmark system, the fault cases, and corresponding test
cases can be found in our replication package [24].

6.1 Efficiency and Scalability (RQ1)

To answer RQ1, we assess the efficiency and scalability
of our approach for debugging failures caused by the
circumstances of different dimensions. The debugging of

failures caused by node circumstances is simple as we only
need to test the delta between single-node deployment and
multiple-node deployment of the system. Therefore, we
design three failure cases, each of which is caused by the
circumstances of one dimension (instance, configuration,
or sequence). For each failure case, we inject a fault into
the implementation or environmental configurations of the
benchmark system: the fault of the instance dimension is
caused by the lacking of coordination of different instances
of a microservice that has an implicit state; the fault of the
configuration dimension is caused by inconsistent config-
urations of a microservice (e.g., the memory limit of JVM
is larger than that of Docker); the fault of the sequence
dimension is caused by the lacking of coordination of a
series of asynchronous invocations of a microservice. For
each failure case, we prepare a set of test cases one of which
triggers the failure.

We evaluate our approach with two different settings,
i.e., with and without the optimization introduced in Sec-
tion 4.4. For the setting with optimization, we use a
multiple-cluster environment for the evaluation: the VMs
are divided into multiple clusters each of which has two
VMs (one used as the master node of Kubernetes and the
other used for the deployment and execution of delta testing
tasks). For the setting without optimization, we use a single-
cluster environment for the evaluation: one VM is used as
the master node of Kubernetes and the other VMs are used
for the deployment and execution of delta testing tasks. We
evaluate the approach with different supplies of resources
from 2 VMs to 12 VMs, i.e., 1 to 6 clusters for the multiple-
cluster environment. In the testing for each failure case, the
delta debugging approach considers only the deltas of the
corresponding dimension. The three failure cases involve
different numbers of atomic deltas between the simplest
circumstance and the failure-inducing circumstance: 15, 20,
and 20 in the cases of instance delta, configuration delta, and
sequence delta, respectively. For each execution of the delta
debugging process, we collect the returned delta set and the
execution time.

After the study, we manually check the returned results
and confirm that all of them provide a valid set of deltas for
diagnosing the root causes. We evaluate the efficiency and
scalability of the approach by analyzing the delta debugging
time with different numbers of VMs. The results presented
in Figure 3 show that our approach uses 4-40 minutes to
finish a delta debugging process. The time used for sequence
deltas is much more than the other two kinds of deltas, since
the sequence deltas involve many combinations of different
orders of microservice pairs.

Without optimization, the approach cannot well utilize
the provided VMs, as it needs to sequentially execute all
the considered delta testing tasks. The time used for the
delta debugging process fluctuates and in some cases even
increases with the increase of the provided VMs. We suspect
that such result may be caused by the increasing overhead
of managing pods over a more distributed environment.
In contrast, with optimization, the time used for the delta
debugging process continuously decreases from 16-37 min-
utes to 4-16 minutes with the increase of the provided VMs.
The limit of the optimization by parallelization is the time
required for the execution of a single delta testing task,

9

(a) Instance Delta (b) Configuration Delta (c) Sequence Delta

Fig. 3. Efficiency and Scalability Evaluation Results
which is around 2 minutes in our environment according
to our evaluation results.

The preceding analysis shows that our approach for
delta debugging microservice systems can well scale with
the provided VMs; it can complete a delta debugging pro-
cess in minutes when fully optimized by parallelization.

6.2 Effectiveness (RQ2)

To answer RQ2, we conduct an experimental study that
uses the approach to debug real microservice failures. The
benchmark system TrainTicket includes 11 representative
fault cases that are replicated from industrial fault cases
collected in an industrial survey. Among the 11 fault cases,
we choose 4 fault cases according to the following two
criteria: being relevant to deployment, environmental con-
figurations, or asynchronous interactions, along with being
the most time consuming and complex according to the
feedback from industrial developers. These fault cases are
shown in Table 2. The first 3 fault cases correspond to
a circumstance dimension, i.e., instance, configuration, or
sequence, respectively. The last one involves circumstances
of two dimensions (i.e., instance and sequence). According
to our recent empirical study [10], the participants used 1.3-
2.3 hours for debugging each of these fault cases, or even
failed with an improved approach of trace visualization.

We incorporate the implementations of the four fault
cases into the benchmark system. For each fault case, we
use the corresponding test cases provided by the benchmark
system to run the system and produce a failure. We then
apply our approach to each fault case with the multiple-
cluster setting: 12 VMs are divided into 6 clusters and each
cluster has 2 VMs. We record and analyze each fault case
and obtain the results as shown in Table 3. For each fault
case, the table reports the number of deltas in the universal
set (#Delta (U)), the number of deltas in the returned delta
set (#Delta (R)), the number of tasks created during the
process (#Task (C)), the number tasks scheduled to execute
(#Task (S)), the number of tasks finished (#Task (F)), the time
used (Time), and the indication of the returned deltas. It can
be seen that these fault cases involve 36-63 deltas and the
returned result includes 1-4 deltas. The whole delta debug-
ging process takes 18-46 minutes. During the process, 32-96
delta testing tasks are created, 20-70 of them are scheduled
to execute, and 8-48 of them finish their executions.

To confirm the effectiveness of the approach, we analyze
the returned deltas for each fault case. We first understand
the returned deltas and then examine whether the root
causes can be identified based on the deltas.

For F1, the returned delta suggests that the failure is
induced by the multi-instance deployment of a microser-
vice. The delta accurately reveals the circumstance delta that
induces the failure. Based on the indication, the developers
need to further check the states of the microservice to
identify the root cause.

For F2, the returned delta suggests that the failure is
induced by the memory limit of a microservice. Actually
the fault involves the improper memory limits of multiple
microservices and any of them can cause a failure. The delta
reveals the problem of memory limit setting of one of the
microservices. Based on the indication, the developers can
soon identify the root cause of one microservice, but need to
further identify the root causes of the other microservices,
e.g., by iteratively performing the delta debugging process.

For F3, the returned 2 deltas suggest that the failure is
induced by the orders of two pairs of asynchronous invoca-
tions, say (MS1, MS2) and (MS1, MS3). The real cause of
this failure is only the order of the pair (MS1, MS3). In this
case, the simplest circumstance for the sequence is < MS1,
MS2, MS3 > and the failure circumstance is < MS2, MS3,
MS1 >. The order between MS1 and MS2, and the order
between MS1 and MS3 are included in the returned deltas
as they are different in the two circumstances. The failure
however is induced by only the order between MS1 and
MS3. In this case, the right failure-inducing delta (i.e., the
order between MS1 and MS3) is included in the returned
deltas. The developer is thus required to eliminate the other
returned delta (i.e., the order between MS1 and MS2) by
further analyzing the data.

F4 involves circumstances of two dimensions, and thus
it creates and executes the most delta testing tasks and
consumes the most time. For F4, the returned 4 deltas
suggest that the failure is induced by the multi-instance
deployment of a microservice and the orders of three pairs
of asynchronous invocations. Similar to F1, the deltas accu-
rately reveal the microservice that has the problem of multi-
instance deployment. Similar to F3, among the returned
three pairs, only one is the right failure-inducing delta.

To understand how delta debugging is conducted, we
record and analyze the delta debugging process for F4 with
8 VMs (divided into 4 clusters) as the resources. Figure 4
shows the process, which includes 9 rounds. In each round,
a series of delta testing tasks are created, scheduled, and exe-
cuted in parallel. Those tasks are shown as rectangles by the
order of task creation. Each task is represented as4par(dn),
where par describes the way how the current delta subset is
partitioned from the delta subset of the last parallel round
and dn is the number of atomic deltas included in the

10

TABLE 2
Fault Cases Used in Effectiveness Evaluation

Fault Description Dimension
F1 A microservice invocation chain involves two invocations of the same microservice, but the invocations are served by two

microservice instances in different states.
Instance

F2 JVM’s max memory configuration conflicts with Docker cluster’s memory limit configuration. As a result, Docker sometimes
kills the JVM process.

Configuration

F3 A series of asynchronous microservice invocations are returned in an unexpected order. Sequence
F4 Multiple asynchronous microservice invocations update a data structure in an unexpected order, and at the same time multiple

instances of another microservice in the invocation chain access a storage without coordination.
Instance, Sequence

TABLE 3
Basic Results of Effectiveness Evaluation

Fault #Delta (U) #Delta (R) #Task (C) #Task (S) #Task (F) Time Indication of Returned Deltas
F1 36 1 32 20 10 30 m the multi-instance deployment of a microservice
F2 63 1 36 23 8 18 m the memory limit of a microservice
F3 43 2 41 26 12 29 m the orders of two pairs of asynchronous invocations
F4 43 4 96 70 48 46 m the multi-instance deployment of a microservice, the orders of three pairs of asynchronous invocations

current delta subset. par can be represented as i/n, denoting
the ith subset of n equal subsets, or 1 \ i/n, denoting the
complement of the ith subset of n equal subsets. A delta
testing task can have different results: X indicates that
the test passes; × indicates that the test fails; “Removed”
indicates that the task is removed before it is scheduled to
execute; “Canceled” indicates that the task is scheduled to
execute but canceled before it finishes; “Executed” indicates
that the task has been executed in previous rounds.

In each round, the created tasks are scheduled to execute
in parallel, and once a task returns a failure, some of the
other tasks are removed or canceled. For example, in Round
1, the first 6 tasks are scheduled to execute in parallel, each
with a cluster. When some tasks finish, some other tasks
(e.g., 41\4/4) are scheduled to execute. When the task 41/2

returns failure, Round 1 ends with a subset of 21 atomic
deltas. At the same time, some executing tasks (e.g.,41\4/4)
are canceled and some tasks in the queue (e.g., 41\1/4) are
removed. The tasks that test the subsets of 41/2 (i.e., 41/4

and 42/4) are kept. Round 2 creates a series of tasks to test
the subsets of the result of Round 1, and ends with a subset
of 16 atomic deltas. The delta debugging process continues
till Round 8 finds a subset of 4 deltas. Finally Round 9 has all
the created tasks returning unknown, thus confirming that
the subset found in Round 8 is the minimal delta subset.

The task statistics of the delta debugging process are
shown in Table 4, including the numbers of delta testing
tasks that are created, finished, canceled, and removed, re-
spectively. Among the 84 tasks that are created, 51 (60%) are
executed and finished, 21 (25%) are executed and canceled,
and 12 (15%) are removed without execution. The extra
resource consumption (i.e., canceled tasks) of the parallel ex-
ecution is reasonably low. Moreover, these tasks are canceled
before they are finished, and thus the actual overhead is
even lower. It can also be seen that 19 (23%) tasks are reused,
i.e., their results are used without execution in subsequent
rounds.

The preceding analysis shows that the approach can
well utilize parallelization and optimized scheduling to
efficiently perform a delta debugging process. The approach
can identify failure-inducing deltas of different dimensions
for helping diagnose the root causes:

1. Instance deltas usually can accurately indicate the
multi-instance-deployment problems of microservices. The
developers need to further analyze the states of the mi-
croservices to identify the root causes.

2. Configuration deltas can indicate the configuration
problems of some microservices but may miss the same

TABLE 4
Task Statistics in the Delta Debugging Process of F4

Round Created Finished Canceled Removed Reused
Round 1 11 6 3 2 0
Round 2 13 8 3 2 0
Round 3 8 2 4 2 3
Round 4 10 5 3 2 1
Round 5 20 15 3 2 0
Round 6 5 5 0 0 5
Round 7 4 2 2 0 4
Round 8 9 4 3 2 0
Round 9 4 4 0 0 6

Total 84 51 (60%) 21 (25%) 12 (15%) 19 (23%)

problems of other microservices. The developers need to
iteratively perform the delta debugging process to identify
the problems of more microservices.

3. Sequence deltas can indicate the pairs of microser-
vice invocations that induce the failure but may include
irrelevant pairs of invocations in the same sequence. The
developers need to further confirm the pairs involved in the
deltas to identify the root causes.

6.3 Threats to Validity
The major threats to the external validity of our studies lie
in the representativeness of the benchmark system, failure
cases, and testing environment used in our studies. Al-
though the benchmark system is the largest among eval-
uation subjects for microservice systems in the research
literature, it is smaller and less complex than large industrial
microservice systems. Although the used failure cases are
derived from real industrial cases, these failure cases may
be less complex than various failure cases in industrial sys-
tems. The testing environment used in our studies may not
represent more complex cloud environments with higher
overhead for parallelization. Therefore, the results of our ex-
perimental studies may not be generalized to larger or more
complex systems, failure cases, or testing environments.

A major threat to the internal validity of our studies
lies in the uncertainties of the testing environment used in
the studies. The environment consists of virtual machines
provided by a private cloud, and the performance and relia-
bility of the virtual machines are uncertain, thus making the
data (e.g., debugging time) collected from the environment
likely inaccurate.

7 RELATED WORK

Delta Debugging. Our work is an extension of existing
work on debugging, particularly, delta debugging. Delta

11

Fig. 4. Delta Debugging Process of F4

debugging is proposed for traditional monolithic systems.
Zeller et al. [23] propose delta debugging for simplifying
and isolating failure-inducing inputs. Since then, there have
been many extensions. For example, it is extended to isolate
cause-effect chains from programs by contrasting program
states between successful and failed executions [15], [25].
Cleve et al. [26] extend delta debugging to identify the
locations and times where the cause of a failure changes
from one variable to another. Sumner et al. [27], [28] improve
delta debugging in its precision and efficiency by combining
it with more precise techniques of execution alignment.
A cause inference model [29] is also proposed to provide
a systematic way of explaining the difference between a
failed execution and a successful execution. Burger et al. [30]
propose an approach called JINSI that combines delta de-
bugging and dynamic slicing for effective fault localization.
JINSI can reduce the number of method calls and returns
to the minimum number required to reproduce a failure.
Misherghi et al. [31] propose hierarchical delta debugging
to speed up delta debugging by considering hierarchical
constraints in the system under debugging. Recently, it is
further extended to coarse hierarchical delta debugging [32].
Multiple tools (e.g., [33]) have also been developed to sup-
port delta debugging. The preceding approaches are all
designed for delta debugging traditional monolithic sys-
tems. As discussed earlier, these existing delta-debugging
approaches are ineffective for microservice systems due
to the unique characteristics of microservice systems (i.e.,
unique deltas and ways of constructing and executing delta
testing tasks).

Debugging Concurrent/Distributed Programs. Our
work is related to existing work on debugging concurrent
programs [34], [35], [36] and distributed systems [37], [38],

[39], [40]. In view of the difficulty in debugging concurrent
programs and distributed systems, a variety of different
approaches have been proposed. We next discuss some
samples of these approaches. Choi et al. [41] apply delta
debugging to multi-threaded failures, defining the differ-
ences between a failing test execution and passing test
execution in terms of the scheduling. Asadollah et al. [42]
present a systematic study on debugging concurrent and
multicore software in the decade between 2005 and 2014.
Bailis et al. [37] present a survey on recent approaches for
debugging distributed systems. Their conclusion is that the
state of the art of debugging distributed systems is still in
its infancy. Giraldeau et al. [38] propose an approach to visu-
alize the execution of distributed systems using scheduling,
network, and interrupt events. Aguerre et al. [39] present
a simulation and visualization platform that incorporates a
distributed debugger. Beschastnikh et al. [40] discuss the key
features and debugging challenges of distributed systems
and present a visualization tool named ShiViz. Leonardo et
al. [43] introduce a lightweight fault localization approach
for cloud systems; it can localize faults with high precision,
by relying on only lightweight positive training. In contrast
to the preceding previous work, our work is the first to con-
duct delta debugging for microservice systems. Compared
to debugging traditional concurrency systems, debugging
microservice systems is considerably more challenging due
to the high complexity and dynamism of microservices.
A microservice system includes numerous microservice in-
stances running on a large number of nodes. These instances
are created and destroyed dynamically, and involve com-
plex environmental configurations in different layers (e.g.,
JVM, container, VM). Moreover, the invocation chains of
microservices can be very long and most of the invocations

12

are asynchronous. A basic way for debugging distributed
systems is tracing and visualizing system executions over
system nodes. However, for microservice systems, there
lacks a natural correspondence between microservices and
system nodes in distributed systems, as microservice in-
stances can be dynamically created and destroyed [10].

Debugging Service-Oriented Architecture (SOA) Ap-
plications. Our work is closely related to existing work on
debugging SOA applications. Arora et al. [44] present an
approach for automatically reproducing production failures
to provide a sandboxed debugging environments for SOA
applications. This approach requires developers to attach
debuggers and analysis tools in the debugging environ-
ments. Chen [45] applies the methodology of spectrum-
based fault localization to SOA applications. Alodib and
Bordbar [46] present a model-based approach to fault di-
agnosis in SOA systems. It extends techniques of Discrete
Event Systems to monitor service interactions and identify
possible failures. These approaches do not consider the
multi-dimensional nature of microservice faults, e.g., nodes,
microservice instances, interaction sequences, and environ-
mental configurations.

Microservice Analysis. Our work is also related to ex-
isting work on analyzing microservice systems. Francesco
et al. [47] present a systematic study on the state of the
art on microservice architectures from three perspectives:
publication trends, focus of research, and potential for in-
dustrial adoption. One of their conclusions is that research
on architecting microservices is still in its initial phase
and the balanced involvement of industrial and academic
authors is promising. Alshuqayran et al. [48] present a
study on architectural challenges of microservice systems,
the architectural diagrams used for representing them, and
the involved quality requirements. Dragoni et al. [49] re-
view the development history from objects, services, to
microservices, present the current state of the art, and
raise some open problems and future challenges. Carlos et
al. [7] present an initial set of requirements for a candidate
microservice benchmark system to be used in research on
software architecture. Within the best of our knowledge,
there exists no previous research on systematic debugging
dedicated to microservices, as focused by our work.

8 CONCLUSION

In this article, we have proposed a delta debugging ap-
proach for microservice systems with the objective of min-
imizing failure-inducing deltas of circumstances (e.g., de-
ployment, environmental configurations, or interaction se-
quences) for more effective debugging. Our approach in-
cludes novel techniques for defining, manipulating, and
executing deltas during delta debugging. Our evaluation
shows that our approach is scalable and efficient with the
provided infrastructure resources. It also confirms that our
approach can effectively identify failure-inducing deltas for
helping diagnose the root causes.

Our current approach is limited in the granularity of the
supported atomic deltas. For example, we consider only
the difference between the default value (e.g., unlimited
memory) and the value in a failure setting (e.g., a memory
limit of 200 Mb) of a configuration item in the configuration

dimension. Moreover, the circumstance dimensions that our
current approach considers are also limited. In our future
work, we plan to further improve the approach by refining
the granularity of deltas and at the same time consider-
ing additional circumstance dimensions (e.g., invocation
chains).

ACKNOWLEDGMENTS

This work was supported by the National Key Research
and Development Program of China under Grant No.
2018YFB1004803, NSF under grants no. CNS-1513939, CNS-
1564274, CCF-1816615, and a grant from Huawei.

REFERENCES

[1] J. Lewis and M. Fowler, “Microservices: a definition of
this new architectural term,” 2014. [Online]. Available:
http://martinfowler.com/articles/microservices.html

[2] Tencent, “WeChat,” 2018. [Online]. Available:
https://www.wechat.com

[3] H. Zheng, D. Li, B. Liang, X. Zeng, W. Zheng, Y. Deng, W. Lam,
W. Yang, and T. Xie, “Automated test input generation for android:
Towards getting there in an industrial case,” in 39th IEEE/ACM In-
ternational Conference on Software Engineering: Software Engineering
in Practice Track, ICSE-SEIP 2017, Buenos Aires, Argentina, May 20-
28, 2017, 2017, pp. 253–262.

[4] Docker.Com, “Docker,” 2018. [Online]. Available:
https://docker.com/

[5] W. Morgan, “What’s a service mesh? and why do i need one?”
2017. [Online]. Available: https://buoyant.io/2017/04/25/whats-
a-service-mesh-and-why-do-i-need-one/

[6] X. Zhou, X. Peng, T. Xie, J. Sun, C. Xu, C. Ji, and W. Zhao,
“Benchmarking microservice systems for software engineering
research,” in 40th International Conference on Software Engineering:
Companion Proceeedings, ICSE 2018, Gothenburg, Sweden, May 27 -
June 03, 2018, 2018, pp. 323–324.

[7] C. M. Aderaldo, N. C. Mendonca, C. Pahl, and P. Jamshidi, “Bench-
mark requirements for microservices architecture research,” in 1st
IEEE/ACM International Workshop on Establishing the Community-
Wide Infrecaseructure for Architecture-Based Software Engineering,
ECASE@ICSE 2017, Buenos Aires, Argentina, May 22, 2017, 2017,
pp. 8–13.

[8] A. R. Sampaio, H. Kadiyala, B. Hu, J. Steinbacher, T. Erwin,
N. Rosa, I. Beschastnikh, and J. Rubin, “Supporting microservice
evolution,” in 2017 IEEE International Conference on Software Main-
tenance and Evolution, ICSME 2017, Shanghai, China, September 17-
22, 2017, 2017, pp. 539–543.

[9] A. W. S. Whitepaper, “Microservices on AWS,” 2017. [Online].
Available: https://d0.awsstatic.com/whitepapers/microservices-
on-aws.pdf

[10] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding, “Fault
analysis and debugging of microservice systems: Industrial sur-
vey, benchmark system, and empirical study,” IEEE Transactions
on Software Engineering, pp. 1–1, 2018.

[11] X. Mao, Y. Lei, Z. Dai, Y. Qi, and C. Wang, “Slice-based statistical
fault localization,” Journal of Systems and Software, vol. 89, pp. 51–
62, 2014.

[12] E. Alves, M. Gligoric, V. Jagannath, and M. d’Amorim, “Fault-
localization using dynamic slicing and change impact analysis,”
in 26th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2011), Lawrence, KS, USA, November 6-10, 2011,
2011, pp. 520–523.

[13] W. Wen, “Software fault localization based on program slicing
spectrum,” in 34th International Conference on Software Engineering,
ICSE 2012, June 2-9, 2012, Zurich, Switzerland, 2012, pp. 1511–1514.

[14] A. Perez and R. Abreu, “A qualitative reasoning approach to
spectrum-based fault localization,” in 40th International Conference
on Software Engineering: Companion Proceeedings, ICSE 2018, Gothen-
burg, Sweden, May 27 - June 03, 2018, 2018, pp. 372–373.

[15] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-
inducing input,” IEEE Trans. Software Eng., vol. 28, no. 2, pp. 183–
200, 2002.

13

[16] X. Zhou, X. Peng, T. Xie, J. Sun, W. Li, C. Ji, and D. Ding, “Delta
debugging microservice systems,” in 33rd ACM/IEEE International
Conference on Automated Software Engineering, ASE 2018, Montpel-
lier, France, September 3-7, 2018, 2018, pp. 802–807.

[17] Kubernetes.Com, “Kubernetes,” 2018. [Online]. Available:
https://kubernetes.io/

[18] DockerSwarm.Com, “Docker swarm,” 2018. [Online]. Available:
https://docs.docker.com/swarm/

[19] SpringCloud.Com, “Spring cloud,” 2018. [Online]. Available:
http://projects.spring.io/spring-cloud/

[20] Mesos.Com, “Mesos,” 2018. [Online]. Available:
http://mesos.apache.org/

[21] Istio, “Istio,” 2018. [Online]. Available: https://istio.io/
[22] Redis.Io, “redis.io,” 2016. [Online]. Available: https://redis.io/
[23] A. Zeller, “Yesterday, my program worked. today, it does not.

why?” in Software Engineering - ESEC/FSE’99, 7th European Software
Engineering Conference, Held Jointly with the 7th ACM SIGSOFT
Symposium on the Foundations of Software Engineering, Toulouse,
France, September 1999, 1999, pp. 253–267.

[24] Replication-Package, “Delta debugging microser-
vice systems,” 2018. [Online]. Available:
http://45.77.211.219/msDeltaDebugging/

[25] A. Zeller, “Isolating cause-effect chains from computer programs,”
in Tenth ACM SIGSOFT Symposium on Foundations of Software
Engineering 2002, Charleston, South Carolina, USA, November 18-22,
2002, 2002, pp. 1–10.

[26] H. Cleve and A. Zeller, “Locating causes of program failures,” in
27th International Conference on Software Engineering, ICSE 2005, 15-
21 May 2005, St. Louis, Missouri, USA, 2005, pp. 342–351.

[27] W. N. Sumner and X. Zhang, “Memory indexing: canonicalizing
addresses across executions,” in 18th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2010, Santa Fe,
NM, USA, November 7-11, 2010, 2010, pp. 217–226.

[28] ——, “Algorithms for automatically computing the causal paths
of failures,” in Fundamental Approaches to Software Engineering, 12th
International Conference, FASE 2009, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2009, York, UK,
March 22-29, 2009., 2009, pp. 355–369.

[29] ——, “Comparative causality: explaining the differences between
executions,” in 35th International Conference on Software Engineering,
ICSE 2013, San Francisco, CA, USA, May 18-26, 2013, 2013, pp. 272–
281.

[30] M. Burger and A. Zeller, “Minimizing reproduction of software
failures,” in 20th International Symposium on Software Testing and
Analysis, ISSTA 2011, Toronto, ON, Canada, July 17-21, 2011, 2011,
pp. 221–231.

[31] G. Misherghi and Z. Su, “HDD: hierarchical delta debugging,”
in 28th International Conference on Software Engineering, ICSE 2006,
Shanghai, China, May 20-28, 2006, 2006, pp. 142–151.

[32] R. Hodován, Á. Kiss, and T. Gyimóthy, “Coarse hierarchical delta
debugging,” in 2017 IEEE International Conference on Software Main-
tenance and Evolution, ICSME 2017, Shanghai, China, September 17-
22, 2017, 2017, pp. 194–203.

[33] D. Tool, “Delta tool,” 2015. [Online]. Available:
http://delta.tigris.org/

[34] S. Park, R. W. Vuduc, and M. J. Harrold, “UNICORN: a unified
approach for localizing non-deadlock concurrency bugs,” Softw.
Test., Verif. Reliab., vol. 25, no. 3, pp. 167–190, 2015.

[35] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “Spectrum-
based multiple fault localization,” in 24th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2009, Auckland,
New Zealand, November 16-20, 2009, 2009, pp. 88–99.

[36] S. Park, R. W. Vuduc, and M. J. Harrold, “Falcon: fault localization
in concurrent programs,” in 32nd ACM/IEEE International Confer-
ence on Software Engineering - Volume 1, ICSE 2010, Cape Town, South
Africa, 1-8 May 2010, 2010, pp. 245–254.

[37] P. Bailis, P. Alvaro, and S. Gulwani, “Research for practice: tracing
and debugging distributed systems; programming by examples,”
Commun. ACM, vol. 60, no. 7, pp. 46–49, 2017.

[38] F. Giraldeau and M. Dagenais, “Wait analysis of distributed
systems using kernel tracing,” IEEE Trans. Parallel Distrib. Syst.,
vol. 27, no. 8, pp. 2450–2461, 2016.

[39] C. Aguerre, T. Morsellino, and M. Mosbah, “Fully-distributed
debugging and visualization of distributed systems in anonymous
networks,” in International Conference on Computer Graphics Theory
and Applications and International Conference on Information Visual-

ization Theory and Applications, GRAPP & IVAPP 2012, Rome, Italy,
24-26 February, 2012, 2012, pp. 764–767.

[40] I. Beschastnikh, P. Wang, Y. Brun, and M. D. Ernst, “Debugging
distributed systems,” Commun. ACM, vol. 59, no. 8, pp. 32–37,
2016.

[41] J. Choi and A. Zeller, “Isolating failure-inducing thread sched-
ules,” in International Symposium on Software Testing and Analysis,
ISSTA 2002, Roma, Italy, July 22-24, 2002, 2002, pp. 210–220.

[42] S. A. Asadollah, D. Sundmark, S. Eldh, H. Hansson, and W. Afzal,
“10 years of research on debugging concurrent and multicore
software: a systematic mapping study,” Software Quality Journal,
vol. 25, no. 1, pp. 49–82, 2017.

[43] L. Mariani, C. Monni, M. Pezzè, O. Riganelli, and R. Xin, “Local-
izing faults in cloud systems,” CoRR, vol. abs/1803.00356, 2018.

[44] N. Arora, J. Bell, F. Ivancic, G. E. Kaiser, and B. Ray, “Replay
without recording of production bugs for service oriented appli-
cations,” in 33rd ACM/IEEE International Conference on Automated
Software Engineering, ASE 2018, Montpellier, France, September 3-7,
2018, 2018, pp. 452–463.

[45] C. Chen, “Automated fault localization for service-oriented soft-
ware systems,” Ph.D. dissertation, Delft University of Technology,
Netherlands, 2015.

[46] M. I. Alodib and B. Bordbar, “A model-based approach to fault
diagnosis in service oriented architectures,” in 7th IEEE European
Conference on Web Services, ECOWS 2009, 9-11 November 2009,
Eindhoven, The Netherlands, 2009, pp. 129–138.

[47] P. D. Francesco, I. Malavolta, and P. Lago, “Research on archi-
tecting microservices: Trends, focus, and potential for industrial
adoption,” in 2017 IEEE International Conference on Software Archi-
tecture, ICSA 2017, Gothenburg, Sweden, April 3-7, 2017, 2017, pp.
21–30.

[48] N. Alshuqayran, N. Ali, and R. Evans, “A systematic mapping
study in microservice architecture,” in 9th IEEE International Con-
ference on Service-Oriented Computing and Applications, SOCA 2016,
Macau, China, November 4-6, 2016, 2016, pp. 44–51.

[49] N. Dragoni, S. Giallorenzo, A. Lluch-Lafuente, M. Mazzara,
F. Montesi, R. Mustafin, and L. Safina, “Microservices: yesterday,
today, and tomorrow,” CoRR, vol. abs/1606.04036, 2016.

Xiang Zhou is a PhD student of the School of
Computer Science at Fudan University, China.
He received his master degree from Tongji Uni-
versity in 2009. His PhD work focuses on the
development and operation of microservice sys-
tems.

Xin Peng is a professor of the School of Com-
puter Science at Fudan University, China. He
received Bachelor and PhD degrees in com-
puter science from Fudan University in 2001 and
2006. His research interests include data-driven
intelligent software development, software main-
tenance and evolution, mobile and cloud com-
puting. His work won the Best Paper Award
at the 27th International Conference on Soft-
ware Maintenance (ICSM 2011), the ACM SIG-
SOFT Distinguished Paper Award at the 33rd

IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE 2018), the IEEE TCSE Distinguished Paper Award at the 34th
IEEE International Conference on Software Maintenance and Evolution
(ICSME 2018).

14

Tao Xie is a professor and Willett Faculty
Scholar in the Department of Computer Science
at the University of Illinois at UrbanaChampaign,
USA. He received his PhD degree in Computer
Science from the University of Washington at
Seattle in 2005. His research interests are soft-
ware testing, program analysis, software analyt-
ics, software security, intelligent software engi-
neeirng, and educational software engineering.
He is a Fellow of the IEEE.

Jun Sun is currently an associate professor at
Singapore Management University (SMU). He
received Bachelor and PhD degrees in comput-
ing science from National University of Singa-
pore (NUS) in 2002 and 2006. In 2007, he re-
ceived the prestigious LEE KUAN YEW postdoc-
toral fellowship. He has been a faculty member
since 2010. He was a visiting scholar at MIT
from 2011-2012. Jun’s research interests include
software engineering, formal methods, program
analysis and cyber-security.

Chao Ji is a Master student of the School of
Computer Science at Fudan University, China.
He received his Bachelor degree from Fudan
University in 2017. His work focuses on the de-
velopment and operation of microservice sys-
tems.

Wenhai Li is a Master student of the School of
Computer Science at Fudan University, China.
He received his Bachelor degree from Fudan
University in 2016. His work focuses on the de-
velopment and operation of microservice sys-
tems.

Dan Ding is a Master student of the School of
Computer Science at Fudan University, China.
She received her Bachelor degree from Fudan
University in 2017. Her work focuses on on the
development and operation of microservice sys-
tems.

