
DeepTraLog: Trace-Log Combined Microservice Anomaly
Detection through Graph-based Deep Learning

Chenxi Zhang∗
Fudan University

China

Xin Peng∗†
Fudan University

China

Chaofeng Sha∗
Fudan University

China

Ke Zhang∗
Fudan University

China

Zhenqing Fu∗
Fudan University

China

Xiya Wu∗
Fudan University

China

Qingwei Lin
Microsoft Research

China

Dongmei Zhang
Microsoft Research

China

ABSTRACT
A microservice system in industry is usually a large-scale dis-
tributed system consisting of dozens to thousands of services run-
ning in different machines. An anomaly of the system often can be
reflected in traces and logs, which record inter-service interactions
and intra-service behaviors respectively. Existing trace anomaly
detection approaches treat a trace as a sequence of service invoca-
tions. They ignore the complex structure of a trace brought by its
invocation hierarchy and parallel/asynchronous invocations. On
the other hand, existing log anomaly detection approaches treat a
log as a sequence of events and cannot handle microservice logs
that are distributed in a large number of services with complex
interactions. In this paper, we propose DeepTraLog, a deep learning
based microservice anomaly detection approach. DeepTraLog uses
a unified graph representation to describe the complex structure of
a trace together with log events embedded in the structure. Based
on the graph representation, DeepTraLog trains a GGNNs based
deep SVDD model by combing traces and logs and detects anom-
alies in new traces and the corresponding logs. Evaluation on a
microservice benchmark shows that DeepTraLog achieves a high
precision (0.93) and recall (0.97), outperforming state-of-the-art
trace/log anomaly detection approaches with an average increase
of 0.37 in F1-score. It also validates the efficiency of DeepTraLog,
the contribution of the unified graph representation, and the impact
of the configurations of some key parameters.

∗C. Zhang, X. Peng, C. Sha, K. Zhang, Z. Fu and X. Wu are with the School of Computer
Science and Shanghai Key Laboratory of Data Science, Fudan University, China and
the Shanghai Collaborative Innovation Center of Intelligent Visual Computing, China
†X. Peng is the corresponding author (pengxin@fudan.edu.cn).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510180

CCS CONCEPTS
• Software and its engineering; • Computer systems organiza-
tion → Reliability; Maintainability and maintenance; Cloud
computing;

KEYWORDS
Microservice, Anomaly Detection, Log Analysis, Tracing, Graph
Neural Network, Deep Learning

ACM Reference Format:
Chenxi Zhang, Xin Peng, Chaofeng Sha, Ke Zhang, Zhenqing Fu, Xiya Wu,
Qingwei Lin, and Dongmei Zhang. 2022. DeepTraLog: Trace-Log Combined
Microservice Anomaly Detection through Graph-based Deep Learning. In
44th International Conference on Software Engineering (ICSE ’22), May 21–
29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3510003.3510180

1 INTRODUCTION
Microservice architecture is an approach to developing a single
application as a suite of small services, each running in its own
process and communicating with lightweight mechanisms [15]. A
microservice system in industry is usually a large-scale distributed
system having dozens to thousands of services running in different
machines. Running in a highly uncertain and dynamic environ-
ment, a microservice system often fails due to various infrastructure
problems or application faults such as hardware failures, improper
configurations, implementation faults, and incorrect coordination
in service interactions [42, 43]. To allow engineers to timely react to
potential failures, it is desirable that the anomalies of a microservice
system can be automatically detected at runtime.

Powered by specifications like OpenTracing [27] and related in-
frastructures like SkyWalking [33], distributed tracing [32] has been
widely adopted in industrial microservice systems. Each produced
trace describes the execution process (i.e., invocation chain) of a
request through service instances and each operation (i.e., service
invocation) in it is called a span. At the same time, logging has also
been widely used by the developers to record the behaviors of each
service. A log records significant messages at various critical points
for the purpose of debugging and root cause analysis [7]. A trace
can include several to hundreds of service invocations (i.e., spans)

https://doi.org/10.1145/3510003.3510180
https://doi.org/10.1145/3510003.3510180
https://doi.org/10.1145/3510003.3510180

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Chenxi Zhang, Xin Peng, Chaofeng Sha, Ke Zhang, Zhenqing Fu, Xiya Wu, Qingwei Lin, and Dongmei Zhang

and during each invocation a series of log messages are produced by
the invoked service instance. Industrial distributed tracing systems
can link the log messages of the same trace by injecting the trace ID
and span IDs into the log messages produced by different service
instances.

Recent researches [20, 26] use deep learning based trace analy-
sis methods to detect runtime anomalies of microservice systems.
These approaches treat a trace as a sequence of service invoca-
tions. However, a trace can have a complex structure formed by
the hierarchy of service invocations and parallel/asynchronous in-
vocations. Existing trace anomaly detection approaches ignore the
complex structures of traces. Moreover, they do not consider the
log messages which describe the behaviors of individual service
instances involved in a trace. Therefore, these approaches cannot
well capture microservice anomalies.

On the other hand, logs have been widely used in anomaly de-
tection for distributed systems. Existing log anomaly detection
approaches [7, 24, 40] learn log patterns from normal execution
and detect anomalies when log patterns deviate from the trained
model. These approaches treat a log as a sequence of log events,
which are the abstraction of a group of similar log messages [12].
For a distributed system, a log is produced for each request by
sorting log messages from different nodes involved in the request
by timestamp. For a microservice system, however, a request cor-
responds to an invocation chain that may involve many service
instances and complex invocations among them. If we produce a
log for a request in a similar way, it cannot well capture the complex
structure of its invocation chain.

In this paper, we propose DeepTraLog, a deep learning based mi-
croservice anomaly detection approach. DeepTraLog uses a unified
graph representation, which is called trace event graph (TEG), to
describe the complex structure of a trace together with log events
embedded in the structure. It takes traces and logs as input and
trains a graph-based deep learning model for trace anomaly de-
tection. First, it parses the input traces and logs and extracts span
relationships and log events from them respectively. Second, it gen-
erates vector representations for span events and log events and
at the same time constructs a TEG for each trace. Third, it trains a
gated graph neural networks (GGNNs) based deep SVDD (Support
Vector Data Description) model, which learns a latent representa-
tion for each TEG and a minimized data-enclosing hypersphere.
When used for anomaly detection, DeepTraLog analyzes a trace
and the related logs in a similar way and uses the trained model to
generate a latent representation for the trace. It then determines
whether the trace is anomalous based on its anomaly score, i.e., the
shortest distance from the latent representation of the trace to the
hypersphere. Note that DeepTraLog does not rely on trace labelling
and just requires that the majority of traces in the training set are
produced in normal execution of the system. Moreover, it is able to
capture different types of anomalies.

To evaluate the effectiveness and efficiency of DeepTraLog we
conduct a series of experimental studies on a microservice bench-
mark system. The results show that DeepTraLog outperforms exist-
ing trace- and log-based anomaly detection approaches by 64.94%
and 101.59% on average in terms of precision and recall respectively.
The unified graph representation significantly contributes to the
improvement of DeepTraLog, making it outperform the variant of

Figure 1: Trace, Span, and Log

Figure 2: Timeline of Spans in Figure 1

DeepTraLog using sequence representation by 7.64% and 26.03% on
average in terms of precision and recall respectively. DeepTraLog
is efficient in model training and testing and its response time in
anomaly detection increases linearly with the size of the trace.

In summary, this paper makes the following contributions:
• a unified graph representation of traces and logs that facili-
tates the combined analysis of them;

• a GGNNs based deep SVDD model for microservice anomaly
detection;

• a series of experimental studies validating the effectiveness
and efficiency of DeepTraLog together with the contribution
of the unified graph representation and the impact of the
configurations of some key parameters.

Significance. Our work provides a new and effective way for
combining traces and logs for microservice anomaly detection
which outperforms existing log/trace anomaly detection approaches.
It defines a unified graph-based representation for inter-service
interactions and intra-service behaviors. The representation can
facilitate a variety of different microservice analysis tasks such as
anomaly detection, root cause analysis, and architecture compre-
hension.

2 BACKGROUND AND MOTIVATION
In this section, we first introduce the background about traces and
logs, then motivate our work with an example.

2.1 Background
As a kind of large-scale distributed systems, microservice systems
widely use distributed tracing [27, 32] to profile and monitor their
executions. A trace is the description of the execution process of

DeepTraLog: Trace-Log Combined Microservice Anomaly Detection through Graph-based Deep Learning ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

a request as it moves through a distributed system [27]. For a mi-
croservice system, a trace describes the execution process of a
request through service instances, i.e., a service invocation chain.
The service invocations in a trace are initially recorded by indi-
vidual service instances and then collected and restored to a trace.
As shown in Figure 1, a trace consists of a set of spans in a tree
structure and each span corresponds to a service invocation. Each
trace has a unique trace ID and each span has a unique span ID. A
span records the invoker and the invoked service instance and has
an operation name indicating the operation to be performed. For
example, the operation name of a span of REST invocation can be
POST /api/v1/foodservice/orders. Each span (except the root span)
has a parent span which initiates the current span. For example, in
Figure 1 Span A is a synchronous invocation and during its exe-
cution it initiates two synchronous invocations corresponding to
Span B and Span D respectively. Therefore, Span A is the parent of
Span B and Span D. Distributed tracing has been an important part
of microservice infrastructures and supported by open-source solu-
tions (e.g., Zipkin [35], Jeager [13], and SkyWalking [33]) and cloud
service providers (e.g., Amazon’s X-Ray [3] and Alibaba Cloud’s
ARMS [1]).

Asynchronous invocations and parallel invocations are widely
used in microservice systems for better performance and availabil-
ity. A trace can include several to hundreds of spans (i.e., service
invocations). Therefore, synchronous invocations are often con-
sidered harmful due to the multiplicative effect of downtime [15].
Asynchronous invocations are usually implemented by message-
based communication and are thought to be a way for achieving
high-availability systems as the invoker does not block while wait-
ing. Parallel invocations mean to invoke multiple services at the
same time to reduce the overall response time. They are usually
implemented by making service invocations in multiple threads.

As shown in Figure 1, log messages are produced during each
service invocation. These log messages are produced by the logging
statements written by service developers. They record the internal
states and behaviors of the invoked service instance. A log message
is an unstructured sentence which contains a constant part (log
event) and several variable parts (log parameters). For example, a
log message “[assignSeat] Requested seat type is T1 and number is
2” contains a log event “[assignSeat] Requested seat type is <*> and
number is <*>” and two log parameters SeatType and SeatNumber.
Log event extraction has been a standard step in log parsing. After
log parsing, a log is converted into a sequence of log events.

Traces and logs can be combined for analyzing the runtime
behaviors of microservice systems. A trace describes the service
interactions for a request, while the logs record the internal states
and behaviors in individual service instances. As a service instance
may serve for multiple requests at the same time, its log file inter-
leaves log messages for different requests. To support the combined
analysis, some distributed tracing systems (e.g., SkyWalking [33],
Alibaba ARMS [1]) inject trace IDs and span IDs into log messages
and thus the log messages of a service instance can be associated
with different requests. For example, SkyWalking uses the Mapped
Diagnostic Context mechanism of Java logging frameworks (e.g.,
Log4j [2], Logback [21]) to inject trace IDs and span IDs to log
messages.

2.2 Motivation
Figure 2 shows the timeline of the spans in Figure 1. Span B and Span
D are two parallel invocations generated by Span A, so they have
some overlap in the timeline. Span F is an asynchronous invocation
generated by Span D, so it ends after Span D.

Existing trace anomaly detection approaches [20, 26] treat a trace
as a sequence of service invocations, while existing log anomaly de-
tection approaches [7, 24, 40] treat a log as a sequence of log events.
These approaches cannot well support the anomaly detection of
microservice systems due to the following two reasons.

First, the logs of different service instances need to be combined
for anomaly detection. Existing trace anomaly detection approaches
do not consider logs, thus can only detect anomalies that are re-
flected in trace structures. Figure 1 shows an example of log-level
anomalies. The log messages in Span D show that the train ticket
order does not need food, but those in Span F show that a food
order is created for this train ticket order. This anomaly can only
be detected by combing the log messages of Span D and F.

Second, a trace may have a complex structure involving invo-
cation hierarchy and parallel/asynchronous invocations. A trace
has a tree structure. If all the spans are synchronous invocations,
the trace can be represented by a sequence of service invocations
ordered by their start time. Even so, sequence-based representation
cannot reflect the causal relationships between parent and children
spans and temporal relationships between log events of the same
spans. For example, two adjacent log events in Span A may be far in
the sequence-based representation, as the log events of the descen-
dant spans of Span A are inserted into them. Moreover, a trace may
include parallel or asynchronous invocations. The trace shown in
Figure 1 and Figure 2 includes two parallel invocations (Span B and
Span D) and an asynchronous invocation (Span F). Therefore, the
log events in Span B and Span D (and their descendant spans) can
interleave in any order; Similarly, the log events in Span F and a
part log events in Span D can interleave in any order. If we combine
the log events of different spans into a sequence (e.g., by start time),
the characteristics of parallel or asynchronous invocations will be
lost.

Based on the analysis, we can see that the log events of different
spans of a trace need to be combined in a way that the structure
of the trace can be kept. Therefore, we propose a unified graph
representation that can describe the structure of a trace together
with the log events embedded in the structure to facilitate anomaly
detection.

3 APPROACH
The objective of DeepTraLog is to automatically and accurately
detect anomalous traces of microservice systems. It takes traces and
logs as input and trains a graph-based deep learning model. When
used for anomaly detection, it analyzes a trace and the associated
logs in a similar way and uses themodel to generate a representation
for the trace to calculate its anomaly score.

An overview of DeepTraLog is presented in Figure 3, which in-
cludes six steps. Log Parsing parses the input logs and extracts log
events from the logmessages.Trace Parsing parses the input traces
and converts their spans into span events, which will be analyzed

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Chenxi Zhang, Xin Peng, Chaofeng Sha, Ke Zhang, Zhenqing Fu, Xiya Wu, Qingwei Lin, and Dongmei Zhang

Figure 3: DeepTraLog Overview

together with log events. Event Embedding generates vector rep-
resentations for span events and log events. Graph Construction
constructs a trace event graph (TEG) for each trace to represent var-
ious relationships between the span/log events of the trace. Model
Training trains a gated graph neural networks (GGNNs) based
deep SVDD (Support Vector Data Description) model, which learns
a latent representation for each TEG and a minimized hypersphere
that encloses the representations of the TEGs. Anomaly Detec-
tion determines whether a trace is anomalous based on its anomaly
score (i.e., the shortest distance from the latent representation of
its TEG to the hypersphere).

3.1 Log Parsing
Following existing researches on log anomaly detection [24, 40],
we adopt a state-of-the-art log parsing approach Drain [11]. It can
parse logs in a streaming and timely manner with high parsing
accuracy and efficiency. To support the combined analysis with
traces, we extract and record the trace ID and span ID of each log
message before log parsing. After log parsing, a trace ID and a span
ID are attached with each of the extracted log events for further
analysis.

3.2 Trace Parsing
The log events of a service instance constitute an event sequence. To
combine traces and logs for anomaly detection, we need to convert
the spans of a trace into span events. Span events are a special
kind of events that represent the request and response of service
invocations. When analyzed together with log events, span events
can indicate the starts and ends of service invocations.

For each span of a trace, we convert it into multiple span events
of related spans according to its type (Client/Server or Producer/Con-
sumer). A Client/Server span represents a synchronous invocation,
while a Producer/Consumer span represents an asynchronous invo-
cation. For a Client/Server span we generate a request event and
a response event for the current span (server) and its parent span
(client) respectively. The request event and the response event of
the client (server) represents the sending (receiving) of the service
invocation and the receiving (sending) of the invocation response
respectively. For a Producer/Consumer span we generate a consumer
event for the current span (consumer) and a producer event for the
parent span of the current span (producer). The producer event

and the consumer event represent the sending and receiving of the
message respectively.

The content of a span event includes two parts, an event type and
an operation name. For example, for a Client/Server span with the
operation name POST /api/v1/foodservice/orders, we generate two
span events “Server Request POST /api/v1/foodservice/orders” and
“Server Response POST /api/v1/foodservice/orders” for the current
span and two span events “Client Request POST /api/v1/foodservice/
orders” and “Client Response POST /api/v1/foodservice/orders” for
the parent span of the current span; for a Producer/Consumer span
with the operation name RabbitMQ/Topic/Queue/email/sendEmail,
we generate a span event “Consumer RabbitMQ/Topic/Queue/e-
mail/sendEmail” for the current span and a span event “Producer
RabbitMQ/Topic/Queue/email/sendEmail” for the parent span of
the current span. Each span event has a timestamp obtained from
the span record. For example, the timestamp of a client request
event is the time when the client service instance sends the service
invocation.

3.3 Event Embedding
Log event embedding is widely used in log anomaly detection. It
generates a vector representation for each log event. The vector
representation can identify semantically similar log events and also
distinguish different log events [40]. In DeepTraLog, span events are
analyzed together with log events for anomaly detection. Therefore,
our event embedding generates vector representations for both log
events and span events. Each log event or span event is a sequence
of English words, thus can be treated as a sentence. Following the
common practice of log event embedding, DeepTraLog implements
event embedding in three steps.

Step 1. Preprocessing. Log events and span events contain
non-character tokens (e.g., separators such as “/” and “,”, IP ad-
dresses), stop words (e.g., “a”, “the”, “is”), and compound words
(e.g., “verifycode”, “tripid”). Following previous works [24, 40], we
preprocess log events and span events by removing non-verbal
symbols and stop words, and splitting compound words into in-
dividual words. For example, a span event “Client Request POST
/api/v1/foodservice/orders” is preprocessed into “client request post
api v1 food service orders”.

Step 2. Word Embedding. We use the widely used pre-trained
GloVe model [29] to generate a vector representation for each word

DeepTraLog: Trace-Log Combined Microservice Anomaly Detection through Graph-based Deep Learning ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Figure 4: An Example of Trace Event Graph (TEG)

in log events and span events. Particularly, we use the GloVe 300-
dimensional word vectors trained on Wikipedia and Gigaword 5
data [9]. Thus for each word we can obtain a 300-dimensional vector
as its representation.

Step 3. Sentence Embedding. Sentence embedding generates
a vector representation for each log event and span event based
on word embedding. The words in these events are not equally
important. Some words (e.g., “api”, “get”) are more common, thus
are less important than others (e.g., “food”, “submit”) in sentence
embedding. Therefore, we follow previous works [40] and use TF-
IDF [31] to measure the weight of each word in sentence embedding.
TF (Term Frequency) of a word 𝑤 in an event 𝑒 , which measures
its importance in 𝑒 , is calculated by 𝑇𝐹𝑤,𝑒 =

𝐿𝑤,𝑒

𝐿𝑒
, where 𝐿𝑤,𝑒 is

the occurrences of𝑤 in 𝑒 and 𝐿𝑒 is the number of words in 𝑒 . IDF
(Inverse Document Frequency) of a word 𝑤 , which measures its
frequency in all events, is calculated by 𝐼𝐷𝐹𝑤 = log 𝐿

𝐿𝑤
, where

𝐿 is the total number of events and 𝐿𝑤 is the number of events
containing 𝑤 . Then the weight of a word 𝑤 in an event 𝑒 can be
measured by its TF-IDF score as𝑊𝑤,𝑒 = 𝑇𝐹𝑤,𝑒 × 𝐼𝐷𝐹𝑤 . Thus, the
vector representation of an event 𝑒 can be calculated as the weighted
sum of the vector representations of all its words as following,
where 𝑁𝑒 is the number of different words in 𝑒 and𝑉𝑤 is the vector
representation of a word𝑤 .

𝑉𝑒 =
1
𝑁𝑒

𝑁𝑒∑︁
𝑤=1

𝑊𝑤,𝑒 ·𝑉𝑤 (1)

Note that log events and span events have quite different char-
acteristics, so we calculate the TF-IDF scores and word weights for
log events and span events separately.

3.4 Graph Construction
A trace event graph (TEG) consists of the log events and span events
of a trace and their relationships. A relationship in a TEG can be
one of the following four types.

• Sequence: A sequence relationship represents the predeces-
sor/successor relationship between two sequential span/log
events of the same span.

• Synchronous Request: A synchronous request relationship
represents a synchronous request from a parent span to its
child span.

• Synchronous Response: A synchronous response relation-
ship represents the response of a synchronous request from
a span to its parent span.

• Asynchronous Request: An asynchronous request rela-
tionship represents an asynchronous request from a parent
span to its child span.

Given a trace, we construct a TEG in three steps.
Step 1: Connection of Log Events. For each span of the trace,

obtain all the log events that belong to the span. Then order the log
events by their timestamps and add a sequence relationship from
each log event to the one next to it.

Step 2: Insertion of Span Events. For each span of the trace,
obtain all the span events that belong to the span. Then for each
obtained span event, insert it into the log event sequence of the
current span based on its timestamp and add a sequence relationship
between it and its predecessor/successor event.

Step 3: Connection of Spans. For each span connect it with its
parent span in the following way. If the span is a Client/Server span,
add a synchronous request relationship from the corresponding
client request event of its parent span to the corresponding server
request event of the current span, and a synchronous response
relationship from the corresponding server response event of the
current span to the corresponding client response event of its parent
span. If the span is a Producer/Consumer) span, add an asynchronous
request relationship from the corresponding producer event of its
parent span to the corresponding consumer event of the current
span.

Figure 4 shows an example of TEG, which corresponds to the
trace shown in Figure 1 and Figure 2. In the graph, colored rect-
angles and uncolored rectangles represent span events and log
events respectively. Span events of different colors are of different
types, including client/server request, client/server response, and
producer/consumer. Note that the dotted rounded rectangles which
represent spans in Figure 4 are not the nodes of the TEG but are
just used for illustration. The spans are implicitly represented in
the TEG by the event sequences starting from server request events.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Chenxi Zhang, Xin Peng, Chaofeng Sha, Ke Zhang, Zhenqing Fu, Xiya Wu, Qingwei Lin, and Dongmei Zhang

Arrows of different colors represent different types of relationships.
The graph can well describe the structure of the trace and various
relationships in it. The log events and span events in the same
span form a sequence by their timestamps. Therefore, the temporal
relationships between inter-service interactions (span events) and
intra-service behaviors (log events) can be described and considered
in anomaly detection. The events of different spans are separated
and only connected via request/response relationships between
span events. The structure of the trace is embodied in these re-
quest/response relationships: a synchronous invocation is reflected
by a pair of request and response relationships; an asynchronous
invocation is reflected by a request relationship without the corre-
sponding response relationship. For example, it can be seen that
Span B and Span D are parallel synchronous invocations as their
request/response ranges in Span A overlap; Span F is an asynchro-
nous invocation initiated by Span D as there is no response from
Span F to Span D.

3.5 Model Training
We frame the task of trace-log combined microservice anomaly
detection as an one-class classification problem. One-class classifi-
cation problem aims to learn a model that can accurately describe
the train data which is considered belong to the same class. For
anomaly detection task, most of the training samples are normal
ones which can be regarded as the same class and the others can
identified as outliers (e.g., anomalous traces in our work).

DeepTraLog uses deep SVDD [30] to train a one-class classifi-
cation model for detecting anomalous traces. Deep SVDD learns
useful feature representations of the training data together with
a minimized hypersphere that encloses the latent representations
of the data. Thus the data that is distant from the center of the
hypersphere can be considered anomalous. Existing deep learning
based anomaly detection approaches [20, 26] usually use deep au-
toencoder to detect anomalies based on the reconstruction error
of the data. Thus the anomaly detection relies on an empirically
determined threshold of the reconstruction error, which is often
challenging. In contrast, deep SVDD jointly learns the latent rep-
resentations of the data and a classification boundary without a
threshold. Standard deep SVDD uses multi-layer perception (MLP)
or convolutional neural networks (CNN) to learns the latent repre-
sentations of the data. However, in our work a trace is represented
by a graph (TEG) which cannot be well handled by MLP or CNN.
Therefore, we use gated graph neural networks (GGNNs) to learn
the trace representations and jointly train the GGNNs with deep
SVDD. GGNNs is implemented based on the neural message pass-
ing mechanism and can work well with a variety types of graphs,
such as directed graph, bipartite graph, and undirected graph.

In DeepTraLog, a trace is represented by a TEG, which is a
directed attributed graph 𝑔 = {𝑉 ,𝐴,𝑋 } where: 𝑉 is a set of nodes
(i.e., events); 𝐴 is adjacency matrix of the graph; and 𝑋 ∈ R |𝑉 |×𝑑 is
the node attribute matrix, where each row 𝑥𝑣 of 𝑋 is the attribute
(i.e., event vector) of a node 𝑣 ∈ 𝑉 , 𝑑 is the dimension of the event
vector. GGNNs represents the nodes in a graph as units of a neural
network and the units are linked to each other according to the
adjacency matrix of the graph. GGNNs passes the node attributes as
the messages between the units in every iteration and uses GRU [4]

to determine which messages to remember or forget during the
message passing. The final representation of a node is determined
by a combination of its own state and the state of neighbouring
nodes. The representation of a node after the 𝑡-th iteration is defined
by the following equations:

ℎ
(0)
𝑣 = 𝑥𝑣 (2)

𝑚
(𝑡)
𝑣 = 𝐴T

𝑣 [ℎ
(𝑡−1)T
1 ...ℎ

(𝑡−1)T
|𝑉 |]T + 𝑏 (3)

ℎ
(𝑡)
𝑣 = GRU(𝑚 (𝑡)

𝑣 , ℎ
(𝑡−1)
𝑣) (4)

where ℎ (𝑖)𝑣 is the representation of a node 𝑣 after the 𝑖-th itera-
tion; 𝑥𝑣 is the initial event vector of node 𝑣 ; 𝐴𝑣 = [𝑎T𝑣,:, 𝑎:,𝑣] is the
row and column in the adjacency matrix 𝐴, which represent the
incoming edges and outgoing edges of 𝑣 ;𝐺𝑅𝑈 is the GRU function.
Finally after 𝑇 iterations each node in a TEG can have a vector as
the latent representation. GGNNs calculates the vector represen-
tation of the TEG based on the node vector representations using
a soft-attention mechanism. The soft-attention mechanism takes
the vector representations of the nodes as input and calculates the
weight (attention score) of each node through an attention function
to give higher weights to the nodes that contribute more to the
graph classification. The graph representation of TEG𝑔 is calculated
by the following equation:

ℎ𝑔 = tanh

(∑︁
𝑣∈𝑉

𝜙

(
𝑓𝑖 (ℎ (𝑇)𝑣 , 𝑥𝑣)

)
⊙ tanh

(
𝑓𝑗 (ℎ (𝑇)𝑣 , 𝑥𝑣)

))
(5)

where ℎ𝑔 is the vector representation of a TEG 𝑔; 𝜙 (𝑓𝑖 (ℎ𝑣 (𝑡), 𝑥𝑣))
is the soft-attention mechanism; 𝑓𝑖 and 𝑓𝑗 are neural networks;𝑇 is
the number of layers of GGNNs; ⊙ is element-wise multiplication.
Readers can refer to [17] for more details about GGNNs.

DeepTraLog trains the GGNNs using the following loss function,
which expresses the objective of learning a minimized hypersphere
to enclose the vector representations of TEGs:

𝐿𝑜𝑠𝑠 = 𝑅2 + 1
𝜇𝑁𝑔

𝑁𝑔∑︁
𝑔=1

max {0, | |ℎ𝑔 − 𝑐 | |2−𝑅2} + 𝜆

2

𝑁𝑙∑︁
𝑙=1

| |𝜃 (𝑙) | |2𝐹 (6)

where 𝑐 is the center of the hypersphere; 𝑅 is the radius of the
hypersphere; | |ℎ𝑔 − 𝑐 | |2 is the distance from the latent representa-
tion of a TEG 𝑔 to 𝑐; 𝑁𝑔 is the number of TEGs; 𝑁𝑙 is the number
of network layers in GGNNs; the hyperparameter 𝜇 controls the
trade-off between the hypersphere volume and the violations of
the boundary, which allows some training data mapped outside
the hypersphere (i.e., allowing some anomaly data in the training
set); 𝜆2

∑𝑁𝑙

𝑙=1 | |𝜃
(𝑙) | |2𝐹 is a weight decay regularizer on the GGNNs

parameters 𝜃 with hyperparameter 𝜆.
In the training phase, we jointly optimize the GGNNs parameters

𝜃 and the hypersphere radius 𝑅 in Equation 6. We use Adam [14] to
optimize the GGNNs parameters 𝜃 in each epoch. As the radius 𝑅 is
not an inner parameter of GGNNs, we optimize it using a different
method as follows. We optimize 𝜃 with a fixed 𝑅 in the first few
epochs and after every 𝑘 epochs we calculate an optimized value
for 𝑅 by linear search. Each time when 𝑅 is updated its value is

DeepTraLog: Trace-Log Combined Microservice Anomaly Detection through Graph-based Deep Learning ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Figure 5: Visualization of An Anomalous TEG

calculated as the (1 − 𝜇) percentile of the distances of all the TEGs
in the current epoch. The hypersphere center 𝑐 is set to the mean of
the vector representations of all the TEGs after an initial forward
pass.

3.6 Anomaly Detection
DeepTraLog trains a GGNNs based deep SVDD model for anom-
aly detection. Given a new trace and the corresponding log for
anomaly detection, DeepTraLog follows the same process as the
training phase (i.e., log parsing, trace parsing, event embedding,
and graph construction) to produce a TEG together with its event
embedding for the trace. Then DeepTraLog feeds the TEG into the
trained model to generate a latent representation of the TEG and
uses the latent representation to calculate an anomaly score. The
anomaly score is defined as the shortest distance from the latent
representation of the TEG to the learned hypersphere, which is
calculated by the following equation:

𝑎𝑛𝑠 (ℎ𝑔) = | |ℎ𝑔 − 𝑐 | |2−𝑅2 (7)

where ℎ𝑔 is the vector representation of a TEG 𝑔; 𝑐 is the center
of the learned hypersphere; 𝑅 is the final radius of the learned
hypersphere.

For a TEG𝑔 of a trace, if its anomaly score (i.e., 𝑎𝑛𝑠 (ℎ𝑔)) is greater
than 0 it is treated as anomalous.

To help the users to understand the results of anomaly detection,
DeepTraLog provides a visualization of the TEGs of anomalous
traces. Figure 5 presents an example of the visualization of an
anomalous TEG. Specifically, DeepTraLog highlights the nodes in
the TEG that have high attention scores calculated using Equation 5,
which helps the users to quickly locate the anomalous parts of the
trace.

4 EVALUATION
We implement DeepTraLog using Python 3.8.8, PyTorch 1.8.0, and
PyTorch Geometric 1.7.2 (for GGNNs learning). To evaluate it we
conduct a series of experimental studies to answer the following
research questions:

Table 1: Fault Types in the TrainTicket Dataset

Fault Type Fault Cases Example
Asynchronous
Interaction

F1, F2, F13 F1: asynchronous message deliv-
ery without sequence control

Multi-Instance F8, F11, F12 F12: service states not synchro-
nized among different instances
of the service

Configuration F3, F4, F5, F7 F4: improper configurations of
SSL

Monolithic F6, F9, F10,
F14

F14: wrong calculating process of
train ticket price

• RQ1: How effective is DeepTraLog in microservice anomaly
detection compared with baseline approaches? How much
does the unified graph representation contribute to the ef-
fectiveness of DeepTraLog?

• RQ2: How efficient is DeepTraLog in model training and
anomaly detection comparedwith baseline approaches? How
does DeepTraLog scale with the size of trace in online pre-
diction?

• RQ3: How do different configurations of the GGNNs-based
deep SVDD model impact the effectiveness of DeepTraLog?

4.1 Experimental Design
4.1.1 Benchmark System and Dataset. Our studies are conducted
on the latest release V0.2.0 of TrainTicket1 [42, 44]. It is a medium-
scale open-source microservice system for train ticket booking
and has been widely used in researches on microservice archi-
tecture, infrastructure, and AIOps (Artificial Intelligence for IT
Operation) [20, 41, 43]. It has 45 services written by different lan-
guages (e.g., Java, JavaScript, Python) and communicating with
synchronous REST invocations and asynchronous messaging.

TrainTicket replicates a variety of different types of fault cases
from industrial microservice systems and provides the fault cases in
different fault branches. The latest release of TrainTicket provides
14 compatible fault cases of different types as shown in Table 1.
Each fault case may include multiple fault instances in different
services. The fault types include [43]:

• Asynchronous Interaction - faults caused by missing or
improper coordination of asynchronous service invocations;

• Multi-Instance - faults related to the existence of multiple
instances of the same service at runtime;

• Configuration - faults caused by improper or inconsistent
configurations of services and/or environments (e.g., con-
tainers and virtual machines);

• Monolithic - faults caused by internal implementations of
individual services, which can cause failures even when the
application is deployed in a monolithic mode.

Thus we can have a normal version of TrainTicket and 14 faulty
versions each corresponding to the branch of a fault case. We deploy
different versions of TrainTicket on a Kubernetes cluster with 8
virtual machines, each of which has a 16-core 3.0GHzCPU and 32GB
RAM.We use Python to implement an execution controller that can
execute automated test cases. For each version we use the execution

1TrainTicket Project: https://github.com/FudanSELab/train-ticket

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Chenxi Zhang, Xin Peng, Chaofeng Sha, Ke Zhang, Zhenqing Fu, Xiya Wu, Qingwei Lin, and Dongmei Zhang

controller to simulate user requests by executing automated test
cases. We use Apache SkyWalking [33] as the distributed tracing
framework to collect traces and logs and use ElasticSearch [8] to
store the collected traces and logs.

The resulted dataset includes 132,485 traces and 7,705,050 log
messages. Among the traces 23,334 (17.6%) are anomalous ones
caused by 73 faults of the 14 fault cases which are located in different
services. This dataset is used throughout the whole experimental
studies. It is available in our replication package [5].

4.1.2 Baselines. We use the following four state-of-the-art log-
based or trace-based anomaly detection approaches as the baselines.

• TraceAnomaly [20] is a trace anomaly detection approach
that only considers service-level traces (operations not con-
sidered). It adopts posterior flow based variational auto-
encoders (VAE) to detect anomalous traces.

• MultimodalTrace [26] is a trace anomaly detection ap-
proach that treats a trace as a span sequence and a response
time sequence. It adopts a multi-modal LSTM (Long Short-
Term Memory) model to learn the sequential patterns of
normal traces.

• DeepLog [7] is a log anomaly detection approach that treats
a log as an event sequence. It adopts an LSTM model to pre-
dict the next log event in the sequence and identify possible
anomalies.

• LogAnomaly [24] is a log anomaly detection approach that
treats a log as an event sequence and considers the counts
of different log events as an additional feature. It adopts an
LSTM model to learn sequential and quantitative patterns.
Similar to DeepLog, it detects anomalies by predicting the
next log event.

As TraceAnomaly and MultimodalTrace only consider traces,
we feed them with only the traces when using them. LogAnomaly
and DeepLog only consider logs and treat them as event sequences.
Therefore, we combine all the events (including span events and
log events) of different spans of a trace into a single event sequence
ordered by timestamp and provide the event sequences of all the
traces as the input for these two approaches. TraceAnomaly and
DeepLog provide open-source implementations [22, 34] and we use
them directly. The other two approaches have no publicly available
implementations, so we develop our own implementations based
on their papers.

To evaluate the contribution of the unified graph representation
of traces and logs (i.e., TEG), we derive a variant of DeepTraLog
called GRU-based Deep SVDD which represents all the events of
a trace as an event sequence ordered by timestamp and uses GRU
instead of GGNNs.

For all these baseline approaches we experimentally choose the
best parameters and use their optimal results for comparison.

4.1.3 Metrics. Weuse the precision, recall, and F1-score tomeasure
the effectiveness of anomaly detection based on 𝑇𝑃 (True Positive),
𝐹𝑃 (False Positive), and 𝐹𝑁 (False Negative).

• Precision: the percentage of anomalous traces out of all
traces detected as anomalies, represented as 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃 .

Table 2: Effectiveness of Different Approaches

Approach Precision Recall F1-Score
TraceAnomaly 0.742 0.205 0.321

MultimodalTrace 0.591 0.776 0.671
DeepLog 0.608 0.948 0.741

LogAnomaly 0.415 0.977 0.582
GRU-based Deep SVDD 0.864 0.776 0.818

DeepTraLog 0.930 0.978 0.954

(a) DeepTraLog (b) GRU-based Deep SVDD

Figure 6: Distribution of Latent Representations of Traces

• Recall: the percentage of all anomalous traces that are de-
tected as anomalies, represented as 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃+𝐹𝑁 .
• F1-Score: the harmonic mean of precision and recall, repre-
sented as 𝐹1 = 2·𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ·𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 .

4.1.4 Settings. All the experiments are conducted on a Linux server
with Intel Core i9-10900X 3.70GHz CPU, 128 GB RAM, RTX 3090
with 24GB GPU memory and running Ubuntu 18.04.5. The setting
of DeepTraLog are the following: the embedding size of each event
set to 300, the hidden layer of GGNNs set to 3, the hidden size
of each hidden layer set to 300, the 𝜆 and 𝜇 in Equation 6 set to
0.001 and 0.05 respectively, and the batch size set to 32. Following
the practice in [30], we employ a simple two-phase learning rate
schedule with an initial learning rate 0.0001 in the first 60 epochs
and subsequently 0.00001 in the last 40 epochs. For each approach
we leverage 60% of the normal traces as the training set, 10% of
the normal traces as the validation set, and the rest of the traces
(include the rest 30% of the normal traces and all the anomalous
traces) as the test set.

4.2 RQ1: Effectiveness
Table 2 shows the effectiveness evaluation results of different ap-
proaches. DeepTraLog outperforms all the baseline approaches and
achieves a high precision (0.930), recall (0.978), and F1-score (0.954).

The two trace-based approaches (i.e., TraceAnomaly and Mul-
timodalTrace) achieve low precision and recall. These two ap-
proaches do not consider logs, thus cannot detect anomalies in
log events. As they use sequence-based trace representation and
have a special focus on response time, they can only detect anom-
alies that have significant impact on span sequences or distribution
of response time.

DeepTraLog: Trace-Log Combined Microservice Anomaly Detection through Graph-based Deep Learning ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 3: Training and Testing Time of Different Approaches

Methods Training Time Testing Time
TraceAnomaly 30m 137s

MultimodalTrace 30.4m 148s
DeepLog 77.6m 278s

LogAnomaly 816m 3,136s
GRU-based Deep SVDD 138.8m 105s

DeepTraLog 67.1m 77s

The two log-based approaches (i.e., DeepLog and LogAnomaly)
achieve high recall and low precision. These two approaches con-
sider events within spans (we provide both span events and log
events for them), thus can detect anomalies in span sequences and
log event sequences. However, they rely on the prediction of the
next event in a sliding window of the event sequence, thus have
no global view of the trace and its structure. Therefore, they are
likely to falsely report unseen event subsequences as anomalies.
Actually, this kind of log anomaly detection approaches usually
work on a single log event sequence such as the HDFS dataset [38].
Thus, they cannot well work for microservice anomaly detection
which involves many service instances and distributed log events
in parallel and asynchronous service invocations.

GRU-based Deep SVDD achieves better precision and recall than
the four baseline approaches. It considers all the span events and
log events of a trace, thus performs better than log anomaly detec-
tion approaches which rely on sliding window based log analysis.
However, its sequence-based representation of span events and
log events ignores the complex structures of traces brought by
their invocation hierarchies and parallel/asynchronous invocations.
Therefore, it does not perform as well as DeepTraLog.

Figure 6 shows the comparison of the results produced by Deep-
TraLog and GRU-based deep SVDD. We use t-SNE [36] to visualize
the latent representations of the traces in the test set by project-
ing them to 2D space. It can be seen that DeepTraLog can learn a
hypersphere that can better enclose normal traces and distinguish
anomalous traces from normal ones. We believe that the improve-
ment is brought by the unified graph representation of traces and
logs.

In conclusion, DeepTraLog is effective in microservice anomaly
detection and outperforms existing trace- and log-based anomaly
detection approaches by 64.94% and 101.59% on average in terms
of precision and recall respectively. The unified graph representa-
tion significantly contributes to the improvement of DeepTraLog,
making it outperform the variant of DeepTraLog using sequence
representation by 7.64% and 26.03% in terms of precision and recall
respectively.

4.3 RQ2: Efficiency
Using each of the approaches, we train an anomaly detection model
with the training set (including 65,490 traces) and test the model
with the test set (including 56,080 traces). Table 3 shows the training
time and testing time of each approach. These approaches take 30-
816 minutes to train the models and 77-3,136 seconds to finish
the test. In general, all the approaches except LogAnomaly are
efficient, for example training a model in about 30-138 minutes and

finishing the test (the whole test set) in 77-278 seconds. DeepTraLog
is slower than the two trace-based approaches (i.e., TraceAnomaly
and MultimodalTrace) but much faster than the others in model
training. It is much faster than all the other approaches in testing.

The two trace-based approaches (i.e., TraceAnomaly and Multi-
modalTrace) are much faster than DeepTraLog in training, as they
only consider traces. DeepTraLog considers both traces and logs,
thus uses more time in training. However, DeepTraLog is much
faster than them in testing. The reason is that the network param-
eters 𝜃 completely characterize the anomaly detection model and
no data has to be stored for anomaly detection [30].

The two log-based approaches (i.e., DeepLog and LogAnomaly)
use sliding windows to segment event sequences, thus produce a
large number of subsequences for training and testing. Moreover,
LogAnomaly uses an additional count vector sequence for each
subsequence and the dimension of the count vectors is determined
by the number of log events. Public log datasets usually have a
small number of log events. For example, the HDFS log dataset [38]
contains only about 40 log events. In contrast, our dataset has
more than 800 log/span events, causing the curse of dimensionality
for LogAnomaly. The large number of log/span events is popular
in microservice systems, thus traditional log anomaly detection
approaches cannot work well for microservice systems.

GRU-based Deep SVDD uses much simpler sequence represen-
tation for traces and logs, but is slower than DeepTraLog in both
training and testing. The reason is that GGNNs treats nodes (events)
in the graph as network units and conducts message passing in
parallel, while GRU serially processes every event in a very long
sequence.

The response time of online prediction is important for achieving
timely anomaly detection. It highly depends on the size of the trace,
i.e., the number of span/log events in it. To evaluate the scalability
of DeepTraLog with trace size, we conduct an experiment on the
changes of response time with the increase of event number. We
divide the event number 0-900 into nine ranges, e.g., 0-100, 100-
200, and for each range randomly sample 100 traces whose event
numbers are within the range. For each trace we run the anom-
aly detection model 300 times and calculate the average response
time of prediction. We compare the average response time of Deep-
TraLog and GRU-based Deep SVDD for traces of different sizes.
Figure 7 shows the results. It can be seen that the response time of
both approaches increases linearly with the size of the trace and
DeepTraLog is always faster than GRU-based Deep SVDD.

In conclusion, DeepTraLog is slower than trace-based approaches
by 122.19% and faster than log-based approaches by 52.65% in train-
ing; it is faster than trace-based approaches by 45.88% and faster
than log-based approaches by 84.92% in testing. Moreover, the re-
sponse time of DeepTraLog increases linearly with the size of the
trace and it costs DeepTraLog around 4 milliseconds to make a
prediction when the trace includes 800-900 events.

4.4 RQ3: Impact of Configurations
The hyperparameter 𝜇 in the loss function (see Equation 6) and
the hidden layer number of GGNNs are two important parameters
of the GGNNs based deep SVDD model. As stated in Section 3.5,
𝜇 controls the trade-off between the hypersphere volume and the

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Chenxi Zhang, Xin Peng, Chaofeng Sha, Ke Zhang, Zhenqing Fu, Xiya Wu, Qingwei Lin, and Dongmei Zhang

Figure 7: Changes of Response Time with the Increase of
Event Number

(a) hyperparameter 𝜇 in Equation 6

(b) hidden layer number of GGNNs

Figure 8: Impact of Different Configurations

violations of the boundary. The hidden layer number of GGNNs
determines the iterations of message passing between the nodes
in a TEG, thus has great impact on the latent representation the
TEG. The regularization parameter 𝜆 in Equation 6 usually can
be empirically set (e.g., 0.001 in our implementation) as previous
work [30].

Figure 8(a) shows the impact of 𝜇 on the precision, recall, and
F1-score of DeepTraLog. In deep SVDD, 𝜇 usually can take a value
between 0.01 and 0.1 [30]. Bigger 𝜇 usually leads to lower precision

and higher recall as it makes a smaller hypersphere enclosing less
normal traces and anomalous traces. According to the results, 𝜇 =

0.07 achieves the best trade-off in terms of F1-score. Note that the
best configuration of 𝜇 highly depends on the characteristics of the
dataset. It usually can be determined based on the preference on
precision and recall.

Figure 8(b) shows the impact of the hidden layer number of
GGNNs. It is usually set to two to four. It can be seen that both recall
and F1-score decrease with the increase of hidden layer number. It
is usually because that more hidden layers are more likely to lead
to over-smoothing, which makes the features indistinguishable and
thus hurts the classification accuracy [16].

4.5 Threats to Validity
The threats to the internal validity mainly lie in the implementation
and configuration of baseline approaches and the process of dataset
generation. We implement MultimodalTrace and LogAnomaly by
ourselves as they have no publicly available implementations. These
two approaches are based on standard deep learning (e.g., LSTM)
and log event extraction (e.g., FT-Tree) components. We follow their
papers and assemble the components in the same way. Regarding
the impact of configuration, we experimentally choose the best
configurations for all the baseline approaches. For DeepTraLog we
experimentally investigate the impact of some key parameters on
its effectiveness and report the results. The normal and anomalous
traces in our dataset are generated by automatically executing the
normal and faulty versions of the benchmark system respectively. It
is thus possible that the normal traces may include latent anomalies.
To alleviate the threat, we carefully test the involved scenarios of
the normal version before execution andmanually check the quality
of a set of sampled traces after execution.

The threats to the external validity mainly lie in the bench-
mark system and fault cases. Our approach is only evaluated on
TrainTicket and its fault cases. It is unclear whether it can be effec-
tively used for more complex industrial microservice systems and
fault cases. These threats are alleviated from two aspects. First, the
dataset we construct includes complex traces including about 900
events and involving parallel and asynchronous service invocations.
Typically a trace in industrial microservice systems involves dozens
of service invocations and hundreds of log events. Therefore, the
size of trace is comparable. Second, the fault cases of TrainTicket
are replicated from real faults in industrial systems and cover dif-
ferent types of typical faults [42]. Therefore, the fault cases used in
the evaluation are representative.

5 RELATEDWORK
Traditional software anomaly detection approaches are mainly
based on logs [7, 12, 18, 23, 24, 37, 39, 40]. Typically log anomaly
detection consists of two stages. First, it extracts log events from
log messages via log parsing. Widely used log parsing approaches
include Drain [11] and Spell [6]. Second, it conducts anomaly detec-
tion on log event sequences. Early studies use numeric vectors to
represent log sequences, which are usually generated by counting
the numbers of various log event in log sequences. Lou et al. [23]
propose an approach that mines the invariant relationships among

DeepTraLog: Trace-Log Combined Microservice Anomaly Detection through Graph-based Deep Learning ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

log events for anomaly detection. Xu et al. [37] use Principal Com-
ponent Analysis (PCA) to detect log anomalies. Lin et al. [18] use
the hierarchical clustering technique to identify log anomalies and
He et al. [12] extend their work by identifying the correlations
between logs and system metrics.

Recently, there are some approaches using deep learning to de-
tect log anomalies. Du et al. [7] propose a log anomaly detection
approach called DeepLog, which detects anomalies by predicting
the next log event using LSTM. Similarily, Meng et al. [24] propose
a log anomaly detection approach called LogAnomaly. It combines
semantic vectors produced by word embedding and numeric vec-
tors for the prediction of the next log event using LSTM. Zhang et
al. [40] also use semantic vectors to represent log events and use
BiLSTM to detect anomalies of the whole log sequence in an su-
pervised manner. Yang et al. [39] extend [40] to a semi-supervised
approach which estimates the labels of log sequences using PU
learning. These log anomaly detection approaches are based on
sequence representations of log events, thus cannot well detect
anomalous traces that involve complex structures.

In microservice systems, traces are widely used in anomaly de-
tection and root cause analysis [10, 19, 20, 25, 26, 28]. Traditional
approaches [10, 42] rely on the visualization of traces to support
manual trace analysis. Zhou et al. [42] conduct an empirical study
on industrial practices of microservice fault analysis and debugging
and propose an improved trace visualization method. Guo et al. [10]
present an approach that uses trace aggregation and visualization
to help the analysis of error propagation chains.

Recently, some researchers propose automated approaches for
trace anomaly detection. Zhou et al. [43] propose a supervised
approach to detect anomalous traces based on a set of features
extracted from traces. It relies on fault injection to produce a
large number of normal and anomalous traces for training and
a set of predefined trace features extracted from different aspects.
Other approaches detect various types of anomalies by learning
patterns from the traces produced by normal execution [20, 25, 26].
Nedelkoski et al. [25] detect response time anomalies in microser-
vice systems by training an Auto-Encoding Variational Bayes model.
Nedelkoski et al. [26] represent each trace as a span sequence and
a response time sequence and design a multimodal LSTM model
to detect anomalous traces. Liu et al. [20] use a service trace vec-
tor to represent each trace, which treats each possible path as a
dimension in the vector. These trace anomaly detection approaches
do not consider logs. Moreover, they usually represent a trace as a
sequence and do not consider the complex structures of traces.

6 CONCLUSION
In this paper, we have proposed DeepTraLog, a deep learning based
microservice anomaly detection approach. It uses a unified graph
representation to depict the complex structure of a trace together
with log events embedded in the structure. Based on the representa-
tion we design a GGNNs based deep SVDDmodel which can learn a
latent representation for each trace and a minimized data-enclosing
hypersphere. We use the model to detect anomalous traces by cal-
culating their distances to the center of the hypersphere. We have
evaluated DeepTraLog on a microservice benchmark. The results
show that DeepTraLog significantly outperforms state-of-the-art

trace/log anomaly detection approaches. Our future work will ex-
tend DeepTraLog to support more different kinds of anomalies of
microservice systems such as response time anomalies, and on the
other hand evaluate DeepTraLog with different kinds of microser-
vice systems.

7 DATA AVAILABILITY
All the data and results of the work can be found in our replication
package [5].

REFERENCES
[1] Alibaba. 2021. ARMS. Retrieved August 15, 2021 from https://www.aliyun.com/

product/arms
[2] Apache. 2021. Log4j. Retrieved August 15, 2021 from https://logging.apache.

org/log4j/2.x/
[3] AWS. 2021. X-Ray. Retrieved August 15, 2021 from https://aws.amazon.com/xray
[4] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine Translation.
In 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP
2014. ACL, 1724–1734. https://doi.org/10.3115/v1/d14-1179

[5] DeepTraLog. 2021. DeepTraLog. Retrieved August 25, 2021 from https://
fudanselab.github.io/DeepTraLog/

[6] Min Du and Feifei Li. 2016. Spell: Streaming Parsing of System Event Logs. In
IEEE 16th International Conference on Data Mining, ICDM 2016. IEEE Computer
Society, 859–864. https://doi.org/10.1109/ICDM.2016.0103

[7] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. DeepLog: Anomaly
Detection and Diagnosis from System Logs through Deep Learning. In 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2017. ACM,
1285–1298. https://doi.org/10.1145/3133956.3134015

[8] elastic. 2021. Elasticsearch. Retrieved August 15, 2021 from https://www.elastic.
co/elasticsearch/

[9] GloVe. 2021. GloVe. Retrieved August 15, 2021 from https://nlp.stanford.edu/
projects/glove/

[10] Xiaofeng Guo, Xin Peng, Hanzhang Wang, Wanxue Li, Huai Jiang, Dan Ding,
Tao Xie, and Liangfei Su. 2020. Graph-based trace analysis for microservice
architecture understanding and problem diagnosis. In 28th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2016. ACM, 1387–1397. https://doi.org/10.1145/3368089.
3417066

[11] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R. Lyu. 2017. Drain: An
Online Log Parsing Approach with Fixed Depth Tree. In 2017 IEEE International
Conference on Web Services, ICWS 2017. IEEE, 33–40. https://doi.org/10.1109/
ICWS.2017.13

[12] Shilin He, Qingwei Lin, Jian-Guang Lou, Hongyu Zhang, Michael R. Lyu, and
Dongmei Zhang. 2018. Identifying impactful service system problems via log
analysis. In 2018 ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE
2018. ACM, 60–70. https://doi.org/10.1145/3236024.3236083

[13] Jaegertracing.Io. 2021. Jaeger. Retrieved August 15, 2021 from https://www.
jaegertracing.io/

[14] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In 3rd International Conference on Learning Representations, ICLR 2015.
http://arxiv.org/abs/1412.6980

[15] James Lewis and Martin Fowler. 2014. Microservices a definition of this new
architectural term. Retrieved August 25, 2021 from https://www.martinfowler.
com/articles/microservices.html

[16] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper Insights Into Graph
Convolutional Networks for Semi-Supervised Learning. In Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18), Sheila A. McIlraith and Kilian Q.
Weinberger (Eds.). AAAI Press, 3538–3545. https://www.aaai.org/ocs/index.php/
AAAI/AAAI18/paper/view/16098

[17] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. 2016. Gated
Graph Sequence Neural Networks. In 4th International Conference on Learning
Representations, ICLR 2016. http://arxiv.org/abs/1511.05493

[18] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei Chen. 2016.
Log clustering based problem identification for online service systems. In 38th
IEEE/ACM International Conference on Software Engineering, ICSE 2016. ACM,
102–111. https://doi.org/10.1145/2889160.2889232

[19] Dewei Liu, Chuan He, Xin Peng, Fan Lin, Chenxi Zhang, Shengfang Gong, Ziang
Li, Jiayu Ou, and Zheshun Wu. 2021. MicroHECL: High-Efficient Root Cause
Localization in Large-Scale Microservice Systems. In 43rd IEEE/ACM International

https://www.aliyun.com/product/arms
https://www.aliyun.com/product/arms
https://logging.apache.org/log4j/2.x/
https://logging.apache.org/log4j/2.x/
https://aws.amazon.com/xray
https://doi.org/10.3115/v1/d14-1179
https://fudanselab.github.io/DeepTraLog/
https://fudanselab.github.io/DeepTraLog/
https://doi.org/10.1109/ICDM.2016.0103
https://doi.org/10.1145/3133956.3134015
https://www.elastic.co/elasticsearch/
https://www.elastic.co/elasticsearch/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://doi.org/10.1145/3368089.3417066
https://doi.org/10.1145/3368089.3417066
https://doi.org/10.1109/ICWS.2017.13
https://doi.org/10.1109/ICWS.2017.13
https://doi.org/10.1145/3236024.3236083
https://www.jaegertracing.io/
https://www.jaegertracing.io/
http://arxiv.org/abs/1412.6980
https://www.martinfowler.com/articles/microservices.html
https://www.martinfowler.com/articles/microservices.html
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16098
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16098
http://arxiv.org/abs/1511.05493
https://doi.org/10.1145/2889160.2889232

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Chenxi Zhang, Xin Peng, Chaofeng Sha, Ke Zhang, Zhenqing Fu, Xiya Wu, Qingwei Lin, and Dongmei Zhang

Conference on Software Engineering: Software Engineering in Practice, ICSE (SEIP)
2021. IEEE, 338–347. https://doi.org/10.1109/ICSE-SEIP52600.2021.00043

[20] Ping Liu, Haowen Xu, Qianyu Ouyang, Rui Jiao, Zhekang Chen, Shenglin Zhang,
Jiahai Yang, Linlin Mo, Jice Zeng, Wenman Xue, and Dan Pei. 2020. Unsupervised
Detection of Microservice Trace Anomalies through Service-Level Deep Bayesian
Networks. In 31st IEEE International Symposium on Software Reliability Engineer-
ing, ISSRE 2020. IEEE, 48–58. https://doi.org/10.1109/ISSRE5003.2020.00014

[21] Logback. 2021. Logback. Retrieved August 15, 2021 from http://logback.qos.ch/
[22] LogPAI. 2021. Loglizer. Retrieved August 15, 2021 from https://github.com/

logpai/loglizer
[23] Jian-Guang Lou, Qiang Fu, Shengqi Yang, Ye Xu, and Jiang Li. 2010. Mining Invari-

ants from Console Logs for System Problem Detection. In 2010 USENIX Annual
Technical Conference. USENIX Association. https://www.usenix.org/conference/
usenix-atc-10/mining-invariants-console-logs-system-problem-detection

[24] Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei, Yuqing Liu, Yihao
Chen, Ruizhi Zhang, Shimin Tao, Pei Sun, and Rong Zhou. 2019. LogAnomaly: Un-
supervised Detection of Sequential and Quantitative Anomalies in Unstructured
Logs. In Twenty-Eighth International Joint Conference on Artificial Intelligence,
IJCAI 2019. ijcai.org, 4739–4745. https://doi.org/10.24963/ijcai.2019/658

[25] Sasho Nedelkoski, Jorge S. Cardoso, and Odej Kao. 2019. Anomaly Detection and
Classification using Distributed Tracing and Deep Learning. In 19th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, CCGRID 2019.
IEEE, 241–250. https://doi.org/10.1109/CCGRID.2019.00038

[26] Sasho Nedelkoski, Jorge S. Cardoso, and Odej Kao. 2019. Anomaly Detection from
System Tracing Data Using Multimodal Deep Learning. In 12th IEEE International
Conference on Cloud Computing, CLOUD 2019. IEEE, 179–186. https://doi.org/10.
1109/CLOUD.2019.00038

[27] Opentracing.io. 2021. OpenTracing. Retrieved August 15, 2021 from https:
//opentracing.io/

[28] Yicheng Pan, Meng Ma, Xinrui Jiang, and Ping Wang. 2021. Faster, deeper, easier:
crowdsourcing diagnosis of microservice kernel failure from user space. In ISSTA
’21: 30th ACM SIGSOFT International Symposium on Software Testing and Analysis.
ACM, 646–657. https://doi.org/10.1145/3460319.3464805

[29] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove:
Global Vectors for Word Representation. In 2014 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2014. ACL, 1532–1543. https://doi.org/
10.3115/v1/d14-1162

[30] Lukas Ruff, Nico Görnitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Robert A. Van-
dermeulen, Alexander Binder, Emmanuel Müller, and Marius Kloft. 2018. Deep
One-Class Classification. In 35th International Conference on Machine Learning,
ICML 2018 (Proceedings of Machine Learning Research, Vol. 80). PMLR, 4390–4399.
http://proceedings.mlr.press/v80/ruff18a.html

[31] Gerard Salton and Chris Buckley. 1988. Term-Weighting Approaches in Automatic
Text Retrieval. Inf. Process. Manag. 24, 5 (1988), 513–523. https://doi.org/10.1016/
0306-4573(88)90021-0

[32] Benjamin H Sigelman, Luiz Andre Barroso, Mike Burrows, Pat Stephenson, Manoj
Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag. 2010. Dapper, a
large-scale distributed systems tracing infrastructure.

[33] skywalking.apache.org. 2021. Apache SkyWalking. Retrieved August 15, 2021
from http://skywalking.apache.org/

[34] TraceAnomaly. 2021. TraceAnomaly. Retrieved August 15, 2021 from https:
//github.com/NetManAIOps/TraceAnomaly

[35] Twitter. 2021. Zipkin. Retrieved August 15, 2021 from https://zipkin.io/
[36] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data using

t-SNE. Journal of Machine Learning Research 9, 86 (2008), 2579–2605. http:
//jmlr.org/papers/v9/vandermaaten08a.html

[37] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael Jordan. 2009.
Largescale system problem detection by mining console logs. Proceedings of
SOSP’09 (2009).

[38] Wei Xu, Ling Huang, Armando Fox, David A. Patterson, and Michael I. Jordan.
2009. Detecting large-scale system problems by mining console logs. In 22nd
ACM Symposium on Operating Systems Principles, SOSP 2009. ACM, 117–132.
https://doi.org/10.1145/1629575.1629587

[39] Lin Yang, Junjie Chen, Zan Wang, Weijing Wang, Jiajun Jiang, Xuyuan Dong, and
Wenbin Zhang. 2021. PLELog: Semi-Supervised Log-Based Anomaly Detection
via Probabilistic Label Estimation. In 43rd IEEE/ACM International Conference on
Software Engineering, ICSE 2021. IEEE, 230–231. https://doi.org/10.1109/ICSE-
Companion52605.2021.00106

[40] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong Dang,
Chunyu Xie, Xinsheng Yang, Qian Cheng, Ze Li, Junjie Chen, Xiaoting He, Ran-
dolph Yao, Jian-Guang Lou, Murali Chintalapati, Furao Shen, and Dongmei Zhang.
2019. Robust log-based anomaly detection on unstable log data. In 2019 ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019. ACM, 807–817.
https://doi.org/10.1145/3338906.3338931

[41] Nengwen Zhao, Junjie Chen, Zhaoyang Yu, Honglin Wang, Jiesong Li, Bin Qiu,
Hongyu Xu, Wenchi Zhang, Kaixin Sui, and Dan Pei. 2021. Identifying bad
software changes via multimodal anomaly detection for online service systems.

In ESEC/FSE ’21: 29th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, Athens, Greece, August
23-28, 2021. ACM, 527–539. https://doi.org/10.1145/3468264.3468543

[42] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and Dan Ding.
2021. Fault Analysis and Debugging of Microservice Systems: Industrial Survey,
Benchmark System, and Empirical Study. IEEE Trans. Software Eng. 47, 2 (2021),
243–260. https://doi.org/10.1109/TSE.2018.2887384

[43] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Dewei Liu, Qilin Xiang, and
Chuan He. 2019. Latent error prediction and fault localization for microservice
applications by learning from system trace logs. In 2019 ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/SIGSOFT FSE 2019. ACM, 683–694. https://doi.org/10.
1145/3338906.3338961

[44] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chenjie Xu, Chao Ji, and Wenyun Zhao.
2018. Benchmarking microservice systems for software engineering research. In
40th International Conference on Software Engineering, ICSE 2018. ACM, 323–324.
https://doi.org/10.1145/3183440.3194991

https://doi.org/10.1109/ICSE-SEIP52600.2021.00043
https://doi.org/10.1109/ISSRE5003.2020.00014
http://logback.qos.ch/
https://github.com/logpai/loglizer
https://github.com/logpai/loglizer
https://www.usenix.org/conference/usenix-atc-10/mining-invariants-console-logs-system-problem-detection
https://www.usenix.org/conference/usenix-atc-10/mining-invariants-console-logs-system-problem-detection
https://doi.org/10.24963/ijcai.2019/658
https://doi.org/10.1109/CCGRID.2019.00038
https://doi.org/10.1109/CLOUD.2019.00038
https://doi.org/10.1109/CLOUD.2019.00038
https://opentracing.io/
https://opentracing.io/
https://doi.org/10.1145/3460319.3464805
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.3115/v1/d14-1162
http://proceedings.mlr.press/v80/ruff18a.html
https://doi.org/10.1016/0306-4573(88)90021-0
https://doi.org/10.1016/0306-4573(88)90021-0
http://skywalking.apache.org/
https://github.com/NetManAIOps/TraceAnomaly
https://github.com/NetManAIOps/TraceAnomaly
https://zipkin.io/
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1145/1629575.1629587
https://doi.org/10.1109/ICSE-Companion52605.2021.00106
https://doi.org/10.1109/ICSE-Companion52605.2021.00106
https://doi.org/10.1145/3338906.3338931
https://doi.org/10.1145/3468264.3468543
https://doi.org/10.1109/TSE.2018.2887384
https://doi.org/10.1145/3338906.3338961
https://doi.org/10.1145/3338906.3338961
https://doi.org/10.1145/3183440.3194991

	Abstract
	1 Introduction
	2 BackGround and Motivation
	2.1 Background
	2.2 Motivation

	3 Approach
	3.1 Log Parsing
	3.2 Trace Parsing
	3.3 Event Embedding
	3.4 Graph Construction
	3.5 Model Training
	3.6 Anomaly Detection

	4 Evaluation
	4.1 Experimental Design
	4.2 RQ1: Effectiveness
	4.3 RQ2: Efficiency
	4.4 RQ3: Impact of Configurations
	4.5 Threats to Validity

	5 Related Work
	6 Conclusion
	7 Data Availability
	References

